Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Annette M. Molinaro x
Clear All Modify Search
Full access

Arman Jahangiri, Annette M. Molinaro, Phiroz E. Tarapore, Lewis Blevins Jr., Kurtis I. Auguste, Nalin Gupta, Sandeep Kunwar and Manish K. Aghi

Object

Rathke cleft cysts (RCC) are benign sellar lesions most often found in adults, and more infrequently in children. They are generally asymptomatic but sometimes require surgical treatment through a transsphenoidal corridor. The purpose of this study was to compare adult versus pediatric cases of RCC.

Methods

The authors retrospectively reviewed presenting symptoms, MR imaging findings, laboratory study results, and pathological findings in 147 adult and 14 pediatric patients who underwent surgery for treatment of RCCs at the University of Californial at San Francisco between 1996 and 2008.

Results

In both the adult and pediatric groups, most patients were female (78% of adults, 79% of pediatric patients, p = 0.9). Headache was the most common symptom in both groups (reported by 50% of pediatric patients and 33% of adults, p = 0.2). Preoperative hypopituitarism occurred in 41% of adults and 45% of pediatric patients (p = 0.8). Growth delay, a uniquely pediatric finding, was a presenting sign in 29% of pediatric patients. Visual complaints were a presenting symptom in 16% of adult and 7% of pediatric patients (p = 0.4). There was no difference between median cyst size in adults versus pediatric patients (1.2 cm in both, p = 0.7). Temporary or permanent postoperative diabetes insipidus occurred in 12% of adults and 21% of pediatric patients (p = 0.4). Kaplan-Meier analysis revealed an 8% RCC recurrence rate at 2 years for each group (p = 0.5).

Conclusions

The incidence of RCCs is much lower in the pediatric population; however, symptoms, imaging findings, and outcomes are similar, suggesting that pediatric RCCs arise from growth of remnants of the embryonic Rathke pouch earlier in life than adult RCCs but do not differ in any other way. It is important to consider RCCs in the differential diagnosis when pediatric patients present with visual impairment, unexplained headache, or hypopituitarism including growth delay. Although the average RCC size was similar in our pediatric and adult patient groups, the smaller size of the pituitary gland in pediatric patients suggests an increased relative RCC size.

Restricted access

Matthew B. Potts, Justin S. Smith, Annette M. Molinaro and Mitchel S. Berger

Object

Low-grade gliomas (LGGs) are rarely diagnosed as an incidental, asymptomatic finding, and it is not known how the early surgical management of these tumors might affect outcome. The purpose of this study was to compare the outcomes of patients with incidental and symptomatic LGGs and determine any prognostic factors associated with those outcomes.

Methods

All patients treated by the lead author for an LGG incidentally discovered between 1999 and 2010 were retrospectively reviewed. “Incidental” was defined as a finding on imaging that was obtained for a reason not attributable to the glioma, such as trauma or headache. Primary outcomes included overall survival, progression-free survival (PFS), and malignant PFS. Patients with incidental LGGs were compared with a previously reported cohort of patients with symptomatic gliomas.

Results

Thirty-five patients with incidental LGGs were identified. The most common reasons for head imaging were headache not associated with mass effect (31.4%) and trauma (20%). Patients with incidental lesions had significantly lower preoperative tumor volumes than those with symptomatic lesions (20.2 vs 53.9 cm3, p < 0.001), were less likely to have tumors in eloquent locations (14.3% vs 61.9%, p < 0.001), and had a higher prevalence of females (57.1% vs 36%, p = 0.02). In addition, patients with incidental lesions were also more likely to undergo gross-total resection (60% vs 31.5%, p = 0.001) and had improved overall survival on Kaplan-Meier analysis (p = 0.039, Mantel-Cox test). Progression and malignant progression rates did not differ between the 2 groups. Univariate analysis identified pre- and postoperative volumes as well as the use of motor or language mapping as significant prognostic factors for PFS.

Conclusions

In this retrospective cohort of surgically managed LGGs, incidentally discovered lesions were associated with improved patient survival as compared with symptomatic LGGs, with acceptable surgical risks.

Restricted access

Michael C. Oh, Eli T. Sayegh, Michael Safaee, Matthew Z. Sun, Gurvinder Kaur, Joseph M. Kim, Derick Aranda, Annette M. Molinaro, Nalin Gupta and Andrew T. Parsa

Object

Ependymoma is a common CNS tumor in children, with spinal cord ependymomas making up 13.1% of all ependymomas in this age group. The clinical features that affect prognosis in pediatric spinal cord ependymomas are not well understood. A comprehensive literature review was performed to determine whether a tumor location along the spinal cord is prognostically significant in children undergoing surgery for spinal cord ependymomas.

Methods

A PubMed search was performed to identify all papers that contained data on patients with spinal cord ependymomas. Only pediatric patients (age < 18 years) who underwent resection with a clearly reported tumor location were included in the analysis. Myxopapillary tumors were excluded from study. Tumor location was subdivided into 6 regions: cervicomedullary, cervical, cervicothoracic, thoracic, thoracolumbar, and conus medullaris. Kaplan-Meier survival and Cox regression analyses were performed to determine the effects of tumor location on progression-free survival (PFS) and overall survival (OS).

Results

Fifty-eight patients who underwent resection of spinal cord ependymomas were identified. Ependymomas were located all along the spinal cord but occurred with the highest frequency in the cervical region (29.3%). Progression-free survival was significantly better in patients with tumors arising in the upper portion of the spinal cord (p = 0.031), which remained significant in the multivariate Cox regression analysis (p < 0.05). Moreover, OS was significantly better in patients with upper spinal cord ependymomas than in those harboring ependymomas in the lower spinal cord (p = 0.048).

Conclusions

Although more common in adults, spinal ependymomas can occur anywhere along the spinal cord in the pediatric population; however, tumors occurring in the lower half of the spinal cord carry a worse prognosis with shorter PFS and OS. By comparison, ependymomas in the upper spinal cord recur later and less frequently, with little or no mortality in this patient group.

Restricted access

Michael C. Oh, Joseph M. Kim, Gurvinder Kaur, Michael Safaee, Matthew Z. Sun, Anahat Singh, Derick Aranda, Annette M. Molinaro and Andrew T. Parsa

Object

Ependymomas are primary central nervous system tumors that occur more frequently in the spines of adults than they do there in children. Previous studies consist mainly of retrospective single-institutional experiences or case studies. In this study, a comprehensive literature review was performed on reported cases of spinal ependymoma treated with resection to determine whether tumor location along the spinal axis conveys important prognostic information.

Methods

A PubMed search was performed to identify all papers that included data on patients with spinal ependymoma. Only cases involving adult patients who underwent ependymoma resection with a clearly reported tumor location were included for analysis. Tumor locations were separated into 6 groups: cervicomedullary, cervical, cervicothoracic, thoracic, thoracolumbar, and conus + cauda equina. Kaplan-Meier survival and Cox regression analyses were performed to determine the effect of tumor location on progression-free survival (PFS) and overall survival (OS).

Results

A total of 447 patients who underwent resection of spinal ependymomas with clearly indicated location of tumor were identified. The most common locations of spinal ependymomas were the cervical (32.0%) and conus + cauda equina (26.8%) regions. The thoracolumbar and cervicomedullary regions had the fewest tumors (accounting for, respectively, 5.1% and 3.4% of the total number of cases). The conus + cauda equina and thoracolumbar regions had the highest percentage of WHO Grade I tumors, while tumors located above these regions consisted of mostly WHO Grade II tumors. Despite the tendency for benign grades in the lower spinal regions, PFS for patients with spinal ependymomas in the lower 3 regions (thoracic, thoracolumbar, conus + cauda equina) was significantly shorter (p < 0.001) than for those with tumors in the upper regions (cervicomedullary, cervical, cervicothoracic), but the difference in OS did not achieve statistical significance (p = 0.131).

Conclusions

Spinal ependymomas along different regions of spinal axis have different characteristics and clinical behaviors. Tumor grade, extent of resection, and PFS varied by tumor location (upper vs lower spinal regions), while OS did not. Recurrence rates were higher for the lower spinal cord tumors, despite a greater prevalence of lower WHO grade lesions, compared with upper spinal cord tumors, suggesting that tumor location along the spinal axis is an important prognostic factor.

Free access

Elizabeth B. Claus, Kyle M. Walsh, John K. Wiencke, Annette M. Molinaro, Joseph L. Wiemels, Joellen M. Schildkraut, Melissa L. Bondy, Mitchel Berger, Robert Jenkins and Margaret Wrensch

Significant gaps exist in our understanding of the causes and clinical management of glioma. One of the biggest gaps is how best to manage low-grade (World Health Organization [WHO] Grade II) glioma. Low-grade glioma (LGG) is a uniformly fatal disease of young adults (mean age 41 years), with survival averaging approximately 7 years. Although LGG patients have better survival than patients with high-grade (WHO Grade III or IV) glioma, all LGGs eventually progress to high-grade glioma and death. Data from the Surveillance, Epidemiology and End Results (SEER) program of the National Cancer Institute suggest that for the majority of LGG patients, overall survival has not significantly improved over the past 3 decades, highlighting the need for intensified study of this tumor. Recently published research suggests that historically used clinical variables are not sufficient (and are likely inferior) prognostic and predictive indicators relative to information provided by recently discovered tumor markers (e.g., 1p/19q deletion and IDH1 or IDH2 mutation status), tumor expression profiles (e.g., the proneural profile) and/or constitutive genotype (e.g., rs55705857 on 8q24.21). Discovery of such tumor and constitutive variation may identify variables needed to improve randomization in clinical trials as well as identify patients more sensitive to current treatments and targets for improved treatment in the future. This article reports on survival trends for patients diagnosed with LGG within the United States from 1973 through 2011 and reviews the emerging role of tumor and constitutive genetics in refining risk stratification, defining targeted therapy, and improving survival for this group of relatively young patients.

Full access

Penny K. Sneed, Joe Mendez, Johanna G. M. Vemer-van den Hoek, Zachary A. Seymour, Lijun Ma, Annette M. Molinaro, Shannon E. Fogh, Jean L. Nakamura and Michael W. McDermott

OBJECT

The authors sought to determine the incidence, time course, and risk factors for overall adverse radiation effect (ARE) and symptomatic ARE after stereotactic radiosurgery (SRS) for brain metastases.

METHODS

All cases of brain metastases treated from 1998 through 2009 with Gamma Knife SRS at UCSF were considered. Cases with less than 3 months of follow-up imaging, a gap of more than 8 months in imaging during the 1st year, or inadequate imaging availability were excluded. Brain scans and pathology reports were reviewed to ensure consistent scoring of dates of ARE, treatment failure, or both; in case of uncertainty, the cause of lesion worsening was scored as indeterminate. Cumulative incidence of ARE and failure were estimated with the Kaplan-Meier method with censoring at last imaging. Univariate and multivariate Cox proportional hazards analyses were performed.

RESULTS

Among 435 patients and 2200 brain metastases evaluable, the median patient survival time was 17.4 months and the median lesion imaging follow-up was 9.9 months. Calculated on the basis of 2200 evaluable lesions, the rates of treatment failure, ARE, concurrent failure and ARE, and lesion worsening with indeterminate cause were 9.2%, 5.4%, 1.4%, and 4.1%, respectively. Among 118 cases of ARE, approximately 60% were symptomatic and 85% occurred 3–18 months after SRS (median 7.2 months). For 99 ARE cases managed without surgery or bevacizumab, the probabilities of improvement observed on imaging were 40%, 57%, and 76% at 6, 12, and 18 months after onset of ARE. The most important risk factors for ARE included prior SRS to the same lesion (with 20% 1-year risk of symptomatic ARE vs 3%, 4%, and 8% for no prior treatment, prior whole brain radiotherapy [WBRT], or concurrent WBRT) and any of these volume parameters: target, prescription isodose, 12-Gy, or 10-Gy volume. Excluding lesions treated with repeat SRS, the 1-year probabilities of ARE were < 1%, 1%, 3%, 10%, and 14% for maximum diameter 0.3–0.6 cm, 0.7–1.0 cm, 1.1–1.5 cm, 1.6–2.0 cm, and 2.1–5.1 cm, respectively. The 1-year probabilities of symptomatic ARE leveled off at 13%–14% for brain metastases maximum diameter > 2.1 cm, target volume > 1.2 cm3, prescription isodose volume > 1.8 cm3,12-Gy volume > 3.3 cm3, and 10-Gy volume > 4.3 cm3, excluding lesions treated with repeat SRS. On both univariate and multivariate analysis, capecitabine, but not other systemic therapy within 1 month of SRS, appeared to increase ARE risk. For the multivariate analysis considering only metastases with target volume > 1.0 cm3, risk factors for ARE included prior SRS, kidney primary tumor, connective tissue disorder, and capecitabine.

CONCLUSIONS

Although incidence of ARE after SRS was low overall, risk increased rapidly with size and volume, leveling off at a 1-year cumulative incidence of 13%–14%. This study describes the time course of ARE and provides risk estimates by various lesion characteristics and treatment parameters to aid in decision-making and patient counseling.

Full access

Shawn L. Hervey-Jumper, Jing Li, Darryl Lau, Annette M. Molinaro, David W. Perry, Lingzhong Meng and Mitchel S. Berger

OBJECT

Awake craniotomy is currently a useful surgical approach to help identify and preserve functional areas during cortical and subcortical tumor resections. Methodologies have evolved over time to maximize patient safety and minimize morbidity using this technique. The goal of this study is to analyze a single surgeon's experience and the evolving methodology of awake language and sensorimotor mapping for glioma surgery.

METHODS

The authors retrospectively studied patients undergoing awake brain tumor surgery between 1986 and 2014. Operations for the initial 248 patients (1986–1997) were completed at the University of Washington, and the subsequent surgeries in 611 patients (1997–2014) were completed at the University of California, San Francisco. Perioperative risk factors and complications were assessed using the latter 611 cases.

RESULTS

The median patient age was 42 years (range 13–84 years). Sixty percent of patients had Karnofsky Performance Status (KPS) scores of 90–100, and 40% had KPS scores less than 80. Fifty-five percent of patients underwent surgery for high-grade gliomas, 42% for low-grade gliomas, 1% for metastatic lesions, and 2% for other lesions (cortical dysplasia, encephalitis, necrosis, abscess, and hemangioma). The majority of patients were in American Society of Anesthesiologists (ASA) Class 1 or 2 (mild systemic disease); however, patients with severe systemic disease were not excluded from awake brain tumor surgery and represented 15% of study participants. Laryngeal mask airway was used in 8 patients (1%) and was most commonly used for large vascular tumors with more than 2 cm of mass effect. The most common sedation regimen was propofol plus remifentanil (54%); however, 42% of patients required an adjustment to the initial sedation regimen before skin incision due to patient intolerance. Mannitol was used in 54% of cases. Twelve percent of patients were active smokers at the time of surgery, which did not impact completion of the intraoperative mapping procedure. Stimulation-induced seizures occurred in 3% of patients and were rapidly terminated with ice-cold Ringer's solution. Preoperative seizure history and tumor location were associated with an increased incidence of stimulation-induced seizures. Mapping was aborted in 3 cases (0.5%) due to intraoperative seizures (2 cases) and patient emotional intolerance (1 case). The overall perioperative complication rate was 10%.

CONCLUSIONS

Based on the current best practice described here and developed from multiple regimens used over a 27-year period, it is concluded that awake brain tumor surgery can be safely performed with extremely low complication and failure rates regardless of ASA classification; body mass index; smoking status; psychiatric or emotional history; seizure frequency and duration; and tumor site, size, and pathology.

Full access

Jonathan D. Breshears, Annette M. Molinaro and Edward F. Chang

OBJECT

The human ventral sensorimotor cortex (vSMC) is involved in facial expression, mastication, and swallowing, as well as the dynamic and highly coordinated movements of human speech production. However, vSMC organization remains poorly understood, and previously published population-driven maps of its somatotopy do not accurately reflect the variability across individuals in a quantitative, probabilistic fashion. The goal of this study was to describe the responses to electrical stimulation of the vSMC, generate probabilistic maps of function in the vSMC, and quantify the variability across individuals.

METHODS

Photographic, video, and stereotactic MRI data of intraoperative electrical stimulation of the vSMC were collected for 33 patients undergoing awake craniotomy. Stimulation sites were converted to a 2D coordinate system based on anatomical landmarks. Motor, sensory, and speech stimulation responses were reviewed and classified. Probabilistic maps of stimulation responses were generated, and spatial variance was quantified.

RESULTS

In 33 patients, the authors identified 194 motor, 212 sensory, 61 speech-arrest, and 27 mixed responses. Responses were complex, stereotyped, and mostly nonphysiological movements, involving hand, orofacial, and laryngeal musculature. Within individuals, the presence of oral movement representations varied; however, the dorsal-ventral order was always preserved. The most robust motor responses were jaw (probability 0.85), tongue (0.64), lips (0.58), and throat (0.52). Vocalizations were seen in 6 patients (0.18), more dorsally near lip and dorsal throat areas. Sensory responses were spatially dispersed; however, patients' subjective reports were highly precise in localization within the mouth. The most robust responses included tongue (0.82) and lips (0.42). The probability of speech arrest was 0.85, highest 15–20 mm anterior to the central sulcus and just dorsal to the sylvian fissure, in the anterior precentral gyrus or pars opercularis.

CONCLUSIONS

The authors report probabilistic maps of function in the human vSMC based on intraoperative cortical electrical stimulation. These results define the expected range of mapping outcomes in the vSMC of a single individual and shed light on the functional organization of the vSMC supporting speech motor control and nonspeech functions.