Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Anna G. U. Sawa x
  • All content x
Clear All Modify Search
Restricted access

Piyanat Wangsawatwong, Anna G. U. Sawa, Bernardo de Andrada Pereira, Jennifer N. Lehrman, Luke K. O’Neill, Jay D. Turner, Juan S. Uribe, and Brian P. Kelly

OBJECTIVE

Cortical screw–rod (CSR) fixation has emerged as an alternative to the traditional pedicle screw–rod (PSR) fixation for posterior lumbar fixation. Previous studies have concluded that CSR provides the same stability in cadaveric specimens as PSR and is comparable in clinical outcomes. However, recent clinical studies reported a lower incidence of radiographic and symptomatic adjacent-segment degeneration with CSR. No biomechanical study to date has focused on how the adjacent-segment mobility of these two constructs compares. This study aimed to investigate adjacent-segment mobility of CSR and PSR fixation, with and without interbody support (lateral lumbar interbody fusion [LLIF] or transforaminal lumbar interbody fusion [TLIF]).

METHODS

A retroactive analysis was done using normalized range of motion (ROM) data at levels adjacent to single-level (L3–4) bilateral screw–rod fixation using pedicle or cortical screws, with and without LLIF or TLIF. Intact and instrumented specimens (n = 28, all L2–5) were tested using pure moment loads (7.5 Nm) in flexion, extension, lateral bending, and axial rotation. Adjacent-segment ROM data were normalized to intact ROM data. Statistical comparisons of adjacent-segment normalized ROM between two of the groups (PSR followed by PSR+TLIF [n = 7] and CSR followed by CSR+TLIF [n = 7]) were performed using 2-way ANOVA with replication. Statistical comparisons among four of the groups (PSR+TLIF [n = 7], PSR+LLIF [n = 7], CSR+TLIF [n = 7], and CSR+LLIF [n = 7]) were made using 2-way ANOVA without replication. Statistical significance was set at p < 0.05.

RESULTS

Proximal adjacent-segment normalized ROM was significantly larger with PSR than CSR during flexion-extension regardless of TLIF (p = 0.02), or with either TLIF or LLIF (p = 0.04). During lateral bending with TLIF, the distal adjacent-segment normalized ROM was significantly larger with PSR than CSR (p < 0.001). Moreover, regardless of the types of screw-rod fixations (CSR or PSR), TLIF had a significantly larger normalized ROM than LLIF in all directions at both proximal and distal adjacent segments (p ≤ 0.04).

CONCLUSIONS

The use of PSR versus CSR during single-level lumbar fusion can significantly affect mobility at the adjacent segment, regardless of the presence of TLIF or with either TLIF or LLIF. Moreover, the type of interbody support also had a significant effect on adjacent-segment mobility.

Restricted access

Jakub Godzik, Bernardo de Andrada Pereira, Anna G. U. Sawa, Jennifer N. Lehrman, Randall J. Hlubek, Brian P. Kelly, and Jay D. Turner

OBJECTIVE

The objective of this study was to evaluate a novel connector design and compare it with traditional side connectors, such as a fixed-angle connector (FAC) and a variable-angle connector (VAC), with respect to lumbosacral stability and instrumentation strain.

METHODS

Standard nondestructive flexibility tests (7.5 Nm) and compression tests (400 N) were performed using 7 human cadaveric specimens (L1–ilium) to compare range of motion (ROM) stability, posterior rod strain (RS), and sacral screw bending moment (SM). Directions of motion included flexion, extension, left and right lateral bending, left and right axial rotation, and compression. Conditions included 1) the standard 2-rod construct (2R); 2) the dual-tulip head (DTH) with 4-rod construct (4R); 3) FACs with 4R; and 4) VACs with 4R. Data were analyzed using repeated-measures ANOVA.

RESULTS

Overall, there were no statistically significant differences in ROM across the lumbosacral junction among conditions (p > 0.07). Compared with 2R, DTH and FAC significantly reduced RS in extension, left axial rotation, and compression (p ≤ 0.03). VAC significantly decreased RS compared with 2R in flexion, extension, left axial rotation, right axial rotation, and compression (p ≤ 0.03), and significantly decreased RS compared with DTH in extension (p = 0.02). DTH was associated with increased SM in left and right axial rotation compared with 2R (p ≤ 0.003) and in left and right lateral bending and left and right axial rotation compared with FAC and VAC (p ≤ 0.02). FAC and VAC were associated with decreased SM compared with 2R in right and left lateral bending (p ≤ 0.03).

CONCLUSIONS

RS across the lumbosacral junction can be high. Supplemental rod fixation with DTH is an effective strategy for reducing RS across the lumbosacral junction. However, the greatest reduction in RS and SM was achieved with a VAC that allowed for straight (uncontoured) accessory rod placement.

Restricted access

Hakan Bozkuş, Mehmet Şenoğlu, Seungwon Baek, Anna G. U. Sawa, Ali Fahir Özer, Volker K. H. Sonntag, and Neil R. Crawford

Object

It is unclear how the biomechanics of dynamic posterior lumbar stabilization systems and traditional rigid pedicle screw-rod systems differ. This study examined the biomechanical response of a hinged-dynamic pedicle screw compared with a standard rigid screw used in a 1-level pedicle screw-rod construct.

Methods

Unembalmed human cadaveric L3–S1 segments were tested intact, after L4–5 discectomy, after rigid pedicle screw-rod fixation, and after dynamic pedicle screw-rod fixation. Specimens were loaded using pure moments to induce flexion, extension, lateral bending, and axial rotation while recording motion optoelectronically. Specimens were then loaded in physiological flexion-extension while applying 400 N of compression. Moment and force across instrumentation were recorded from pairs of strain gauges mounted on the interconnecting rods.

Results

The hinged-dynamic screws allowed an average of 160% greater range of motion during flexion, extension, lateral bending, and axial rotation than standard rigid screws (p < 0.03) but 30% less motion than normal. When using standard screws, bending moments and axial loads on the rods were greater than the bending moments and axial loads on the rods when using dynamic screws during most loading modes (p < 0.05). The axis of rotation shifted significantly posteriorly more than 10 mm from its normal position with both devices.

Conclusions

In a 1-level pedicle screw-rod construct, hinged-dynamic screws allowed a quantity of motion that was substantially closer to normal motion than that allowed by rigid pedicle screws. Both systems altered kinematics similarly. Less load was borne by the hinged screw construct, indicating that the hinged-dynamic screws allow less stress shielding than standard rigid screws.

Restricted access

Bruno C. R. Lazaro, Fatih Ersay Deniz, Leonardo B. C. Brasiliense, Phillip M. Reyes, Anna G. U. Sawa, Nicholas Theodore, Volker K. H. Sonntag, and Neil R. Crawford

Object

Posterior screw-rod fixation for thoracic spine trauma usually involves fusion across long segments. Biomechanical data on screw-based short-segment fixation for thoracic fusion are lacking. The authors compared the effects of spanning short and long segments in the thoracic spine.

Methods

Seven human spine segments (5 segments from T-2 to T-8; 2 segments from T-3 to T-9) were prepared. Pure-moment loading of 6 Nm was applied to induce flexion, extension, lateral bending, and axial rotation while 3D motion was measured optoelectronically. Normal specimens were tested, and then a wedge fracture was created on the middle vertebra after cutting the posterior ligaments. Five conditions of instrumentation were tested, as follows: Step A, 4-level fixation plus cross-link; Step B, 2-level fixation; Step C, 2-level fixation plus cross-link; Step D, 2-level fixation plus screws at fracture site (index); and Step E, 2-level fixation plus index screws plus cross-link.

Results

Long-segment fixation restricted 2-level range of motion (ROM) during extension and lateral bending significantly better than the most rigid short-segment construct. Adding index screws in short-segment constructs significantly reduced ROM during flexion, lateral bending, and axial rotation (p < 0.03). A cross-link reduced axial rotation ROM (p = 0.001), not affecting other loading directions (p > 0.4).

Conclusions

Thoracic short-segment fixation provides significantly less stability than long-segment fixation for the injury studied. Adding a cross-link to short fixation improved stability only during axial rotation. Adding a screw at the fracture site improved short-segment stability by an average of 25%.

Restricted access

Jakub Godzik, Bernardo de Andrada Pereira, Anna G. U. Sawa, Jennifer N. Lehrman, Gregory M. Mundis Jr., Randall J. Hlubek, Juan S. Uribe, Brian P. Kelly, and Jay D. Turner

OBJECTIVE

Anterior column realignment (ACR) is a new minimally invasive approach for deformity correction that achieves a degree of lordosis similar to that obtained with pedicle subtraction osteotomy (PSO). This study compared the biomechanical profiles of ACR with PSO using range of motion (ROM) and posterior rod strain (RS) to gain insight into the ACR technique and the necessary surgical strategies to optimize longevity and stability.

METHODS

An in vitro biomechanical study using standard flexibility testing (7.5 Nm) was performed on 14 human cadaveric specimens, separated into 2 groups similar in age, sex, bone mineral density, and intact ROM. For group 1 (n = 7, instrumented L1–S1), a 30° ACR was performed at L3–4. For group 2 (n = 7, instrumented T12–S1), a 30° L3 PSO was performed. Specimens were subjected to nondestructive loads in flexion, extension, axial rotation, lateral bending, and compression. Conditions tested were 1) intact, 2) pedicle screw with 2 rods (PSR), 3) ACR or PSO with 2 rods (+2R), and 4) ACR or PSO with 4 rods (+4R). Primary outcome measures of interest were ROM stability and posterior RS at L3–4.

RESULTS

No difference was observed between groups in lumbar lordosis (p = 0.83) or focal angular lordosis at L3–4 (p = 0.75). No differences in stability were observed between ACR+2R and PSO+2R (p ≥ 0.06);​ however, ACR+2R was significantly less stable than PSR in flexion and extension (p ≤ 0.02), whereas PSO+2R was less stable than PSR only in extension (p = 0.04). ACR+4R was more stable than ACR+2R in flexion, extension, left axial rotation, and compression (p ≤ 0.02). PSO+4R was more stable than PSO+2R only in extension (p = 0.04). Both ACR+2R and PSO+2R resulted in significant increases in RS in flexion and extension compared with PSR (p ≤ 0.032). RS in flexion and extension decreased significantly for ACR+4R versus ACR+2R and for PSO+4R versus PSO+2R (p ≤ 0.047). PSO+2R yielded lower RS than ACR+2R in compression (p = 0.03). No differences existed in RS between ACR+4R and PSO+4R (p ≥ 0.05).

CONCLUSIONS

Although ACR appeared to be slightly more destabilizing than PSO using traditional 2R fixation, both techniques resulted in significant increases in posterior RS. The 4R technique increased stability in ACR and decreased RS in both ACR and PSO but may be more beneficial in ACR. Longer-term clinical studies are needed to appropriately identify the durability of the ACR technique in deformity correction.

Restricted access

Fatih Ersay Deniz, Leonardo B. C. Brasiliense, Bruno C. R. Lazaro, Phillip M. Reyes, Anna G. U. Sawa, Volker K. H. Sonntag, and Neil R. Crawford

Object

The authors investigated the biomechanical properties of transpedicular discectomy in the thoracic spine and compared the effects on spinal stability of a partial and total facetectomy.

Methods

Human thoracic specimens were tested while intact, after a transpedicular discectomy with partial facetectomy, and after an additional total facetectomy was incorporated. Nonconstraining pure moments were applied under load control (maximum 7.5 Nm) to induce flexion, extension, lateral bending, and axial rotation while spinal motion was measured at T8–9 optoelectronically. The range of motion (ROM) and lax zone were determined in each specimen and compared among conditions.

Results

Transpedicular discectomy with and without a total facetectomy significantly increased the ROM and lax zone in all directions of loading compared with the intact spine (p < 0.008). The segmental increase in ROM observed with the transpedicular discectomy was 25%. The additional total facetectomy created an insignificant 3% further increase in ROM compared with medial facetectomy (p > 0.2).

Conclusions

Transpedicular discectomy can be performed in the thoracic spine with a modest decrease in stability expected. Because the biomechanical behavior of a total facetectomy is equivalent to that of a medial facetectomy, the additional facet removal may be incorporated without further biomechanical consequences.

Open access

Bernardo de Andrada Pereira, Jennifer N. Lehrman, Anna G. U. Sawa, Derek P. Lindsey, Scott A. Yerby, Jakub Godzik, Alexis M. Waguespack, Juan S. Uribe, and Brian P. Kelly

OBJECTIVE

S2-alar-iliac (S2AI) screw fixation effectively ensures stability and enhances fusion in long-segment constructs. Nevertheless, pelvic fixation is associated with a high rate of mechanical failure. Because of the transarticular nature of the S2AI screw, adding a second point of fixation may provide additional stability and attenuate strains. The objective of the study was to evaluate changes in stability and strain with the integration of a sacroiliac (SI) joint fusion device, implanted through a novel posterior SI approach, supplemental to posterior long-segment fusion.

METHODS

L1-pelvis human cadaveric specimens underwent pure moment (7.5 Nm) and compression (400 N) tests in the following conditions: 1) intact, 2) L2–S1 pedicle screw and rod fixation with L5–S1 interbody fusion, 3) added S2AI screws, and 4) added bilateral SI joint fixation (SIJF). The range of motion (ROM), rod strain, and screw bending moments (S1 and S2AI) were analyzed.

RESULTS

S2AI fixation decreased L2–S1 ROM in flexion-extension (p ≤ 0.04), L5–S1 ROM in flexion-extension and compression (p ≤ 0.004), and SI joint ROM during flexion-extension and lateral bending (p ≤ 0.03) compared with S1 fixation. SI joint ROM was significantly less with SIJF in place than with the intact joint, S1, and S2AI fixation in flexion-extension and lateral bending (p ≤ 0.01). The S1 screw bending moment decreased following S2AI fixation by as much as 78% in extension, but with statistical significance only in right axial rotation (p = 0.03). Extending fixation to S2AI significantly increased the rod strain at L5–S1 during flexion, axial rotation, and compression (p ≤ 0.048). SIJF was associated with a slight increase in rod strain versus S2AI fixation alone at L5–S1 during left lateral bending (p = 0.048). Compared with the S1 condition, fixation to S2AI increased the mean rod strain at L5–S1 during compression (p = 0.048). The rod strain at L5–S1 was not statistically different with SIJF compared with S2AI fixation (p ≥ 0.12).

CONCLUSIONS

Constructs ending with an S2AI screw versus an S1 screw tended to be more stable, with reduced SI joint motion. S2AI fixation decreased the S1 screw bending moments compared with fixation ending at S1. These benefits were paired with increased rod strain at L5–S1. Supplementation of S2AI fixation with SIJF implants provided further reductions (approximately 30%) in the sagittal plane and lateral bending SI joint motion compared with fixation ending at the S2AI position. This stability was not paired with significant changes in rod or screw strains.