Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Andy Ding x
  • All content x
Clear All Modify Search
Restricted access

Andrew Hersh, Robert Young, Zach Pennington, Jeff Ehresman, Andy Ding, Srujan Kopparapu, Ethan Cottrill, Daniel M. Sciubba, and Nicholas Theodore

OBJECTIVE

Currently, no consensus exists as to whether patients who develop infection of the surgical site after undergoing instrumented fusion should have their implants removed at the time of wound debridement. Instrumentation removal may eliminate a potential infection nidus, but removal may also destabilize the patient’s spine. The authors sought to summarize the existing evidence by systematically reviewing published studies that compare outcomes between patients undergoing wound washout and instrumentation removal with outcomes of patients undergoing wound washout alone. The primary objectives were to determine 1) whether instrumentation removal from an infected wound facilitates infection clearance and lowers morbidity, and 2) whether the chronicity of the underlying infection affects the decision to remove instrumentation.

METHODS

PRISMA guidelines were used to review the PubMed/MEDLINE, Embase, Cochrane Library, Scopus, Web of Science, and ClinicalTrials.gov databases to identify studies that compared patients with implants removed and patients with implants retained. Outcomes of interest included mortality, rate of repeat wound washout, and loss of correction.

RESULTS

Fifteen articles were included. Of 878 patients examined in these studies, 292 (33%) had instrumentation removed. Patient populations were highly heterogeneous, and outcome data were limited. Available data suggested that rates of reoperation, pseudarthrosis, and death were higher in patients who underwent instrumentation removal at the time of initial washout. Three studies recommended that instrumentation be uniformly removed at the time of wound washout. Five studies favored retaining the original instrumentation. Six studies favored retention in early infections but removal in late infections.

CONCLUSIONS

The data on this topic remain heterogeneous and low in quality. Retention may be preferred in the setting of early infection, when the risk of underlying spine instability is still high and the risk of mature biofilm formation on the implants is low. However, late infections likely favor instrumentation removal. Higher-quality evidence from large, multicenter, prospective studies is needed to reach generalizable conclusions capable of guiding clinical practice.

Restricted access

Sakibul Huq, Nivedha V. Kannapadi, Joshua Casaos, Tarik Lott, Raphael Felder, Riccardo Serra, Noah L. Gorelick, Miguel A. Ruiz-Cardozo, Andy S. Ding, Arba Cecia, Ravi Medikonda, Jeff Ehresman, Henry Brem, Nicolas Skuli, and Betty M. Tyler

OBJECTIVE

Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and group 3 (Myc driven) subtypes that are associated with the activity of eukaryotic initiation factor 4E (eIF4E), a critical mediator of translation, and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and master regulator of transcription. Recent drug repurposing efforts in multiple solid and hematologic malignancies have demonstrated that eIF4E and EZH2 are both pharmacologically inhibited by the FDA-approved antiviral drug ribavirin. Given the molecular overlap between medulloblastoma biology and known ribavirin activity, the authors investigated the preclinical efficacy of repurposing ribavirin as a targeted therapeutic in cell and animal models of medulloblastoma.

METHODS

Multiple in vitro assays were performed using human ONS-76 (a primitive SHH model) and D425 (an aggressive group 3 model) cells. The impacts of ribavirin on cellular growth, death, migration, and invasion were quantified using proliferation and Cell Counting Kit-8 (CCK-8) assays, flow cytometry with annexin V (AnnV) staining, scratch wound assays, and Matrigel invasion chambers, respectively. Survival following daily ribavirin treatment (100 mg/kg) was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells.

RESULTS

Compared to controls, ribavirin treatment led to a significant reduction in medulloblastoma cell growth (ONS-76 proliferation assay, p = 0.0001; D425 CCK-8 assay, p < 0.0001) and a significant increase in cell death (flow cytometry for AnnV, ONS-76, p = 0.0010; D425, p = 0.0284). In ONS-76 cells, compared to controls, ribavirin significantly decreased cell migration and invasion (Matrigel invasion chamber assay, p = 0.0012). In vivo, ribavirin significantly extended survival in an aggressive group 3 medulloblastoma mouse model compared to vehicle-treated controls (p = 0.0004).

CONCLUSIONS

The authors demonstrate that ribavirin, a clinically used drug known to inhibit eIF4E and EZH2, has significant antitumor effects in multiple preclinical models of medulloblastoma, including an aggressive group 3 animal model. Ribavirin may represent a promising targeted therapeutic in medulloblastoma.