Search Results

You are looking at 1 - 10 of 47 items for

  • Author or Editor: Andrew H. Jea x
  • Refine by Access: all x
Clear All Modify Search
Free access

Douglas L. Brockmeyer, Andrew Jea, Alan R. Cohen, and Arnold H. Menezes

Restricted access

Daniel H. Fulkerson, Steven W. Hwang, Akash J. Patel, and Andrew Jea

External orthosis is the accepted and historical management of odontoid synchondrosis fractures; however, this conservative therapy carries a significant complication and fracture nonunion rate among young children. The purpose of this study was to evaluate the authors' own experience in the context of the literature, to explore surgical fixation as a primary treatment for unstable fractures. The authors retrospectively reviewed 2 cases of unstable odontoid synchondrosis fractures treated at their institution; both showed radiographic progression of deformity and subsequently underwent an open surgical reduction and fusion. A literature review was conducted to compare the authors' management strategy with those in published data. External orthosis for treatment of odontoid synchondrosis fractures has a strong history of success. However, in the literature, patients treated with a halo orthosis had a 43.3% rate of complications and an 11.4% risk of nonunion. There are radiographic findings that suggest instability, such as severe angulation and displacement of the odontoid process. Both patients in the present report underwent successful fusion without complication, as documented on CT scans obtained 3 months after surgery. Given the high rate of fusion attained with conservative therapy, it is recommended for most synchondrosis fractures. However, there is a recognized subgroup of synchondrosis fractures with severe angulation (> 30°) and displacement suggestive of significant ligamentous injury. In these patients, surgical fixation may be a safe and efficacious alternative to halo orthosis as the primary treatment.

Free access

Christina Sayama, Tsulee Chen, Gregory Trost, and Andrew Jea

Pediatric spine fractures constitute 1%–3% of all pediatric fractures. Anywhere from 20% to 60% of these fractures occur in the thoracic or lumbar spine, with the lumbar region being more affected in older children. Younger children tend to have a higher proportion of cervical injuries. The pediatric spine differs in many ways from the adult spine, which can lead to increased ligamentous injuries without bone fractures. The authors discuss and review pediatric lumbar trauma, specifically focusing on epidemiology, radiographic findings, types and mechanisms of lumbar spine injury, treatment, and outcomes.

Restricted access

Sheila L. Ryan, Anish Sen, Kristen Staggers, Thomas G. Luerssen, and Andrew Jea

Object

Quality improvement methods are being implemented in various areas of medicine. In an effort to reduce the complex (instrumented) spine infection rate in pediatric patients, a standardized protocol was developed and implemented at an institution with a high case volume of instrumented spine fusion procedures in the pediatric age group.

Methods

Members of the Texas Children's Hospital Spine Study Group developed the protocol incrementally by using the current literature and prior institutional experience until consensus was obtained. The protocol was prospectively applied to all children undergoing complex spine surgery starting August 21, 2012. Acute infections were defined as positive wound cultures within 12 weeks of surgery, defined in alignment with current hospital infection control criteria. Procedures and infections were measured before and after protocol implementation. This protocol received full review and approval of the Baylor College of Medicine institutional review board.

Results

Nine spine surgeons performed 267 procedures between August 21, 2012, and September 30, 2013. The minimum follow-up was 12 weeks. The annual institutional infection rate prior to the protocol (2007–2011) ranged from 3.4% to 8.9%, with an average of 5.8%. After introducing the protocol, the infection rate decreased to 2.2% (6 infections of 267 cases) (p = 0.0362; absolute risk reduction 3.6%; relative risk 0.41 [95% CI 0.18–0.94]). Overall compliance with data form completion was 63.7%. In 4 of the 6 cases of infection, noncompliance with completion of the data collection form was documented; moreover, 2 of the 4 spine surgeons whose patients experienced infections had the lowest compliance rates in the study group.

Conclusions

The standardized protocol for complex spine surgery significantly reduced surgical site infection at the authors' institution. The overall compliance with entry into the protocol was good. Identification of factors associated with post–spine surgery wound infection will allow further protocol refinement in the future.

Free access

Thomas J. Gianaris, Ryan Nazar, Emily Middlebrook, David D. Gonda, Andrew Jea, and Daniel H. Fulkerson

OBJECTIVE

Endoscopic third ventriculostomy (ETV) is a surgical alternative to placing a CSF shunt in certain patients with hydrocephalus. The ETV Success Score (ETVSS) is a reliable, simple method to estimate the success of the procedure by 6 months of postoperative follow-up. The highest score is 90, estimating a 90% chance of the ETV effectively treating hydrocephalus without requiring a shunt. Treatment with ETV fails in certain patients, despite their being the theoretically best candidates for the procedure. In this study the authors attempted to identify factors that further predicted success in patients with the highest ETVSSs.

METHODS

A retrospective review was performed of all patients treated with ETV at 3 institutions. Demographic, radiological, and clinical data were recorded. All patients by definition were older than 1 year, had obstructive hydrocephalus, and did not have a prior shunt. Failure of ETV was defined as the need for a shunt by 1 year. The ETV was considered a success if the patient did not require another surgery (either shunt placement or a repeat endoscopic procedure) by 1 year. A statistical analysis was performed to identify factors associated with success or failure.

RESULTS

Fifty-nine patients met the entry criteria for the study. Eleven patients (18.6%) required further surgery by 1 year. All of these patients received a shunt. The presenting symptom of lethargy statistically correlated with success (p = 0.0126, odds ratio [OR] = 0.072). The preoperative radiological finding of transependymal flow (p = 0.0375, OR 0.158) correlated with success. A postoperative larger maximum width of the third ventricle correlated with failure (p = 0.0265).

CONCLUSIONS

The preoperative findings of lethargy and transependymal flow statistically correlated with success. This suggests that the best candidates for ETV are those with a relatively acute elevation of intracranial pressure. Cases without these findings may represent the failures in this highly selected group.

Full access

Laurie L. Ackerman, Daniel H. Fulkerson, Andrew Jea, and Jodi L. Smith

OBJECTIVE

Patients with shunts often interact with providers distant from their primary hospital, making it important that the parent(s)/guardian(s) is well versed in the type of shunt implanted and symptoms of malfunction/infection. This is particularly important with magnetic-sensitive programmable valves, as the use of MRI becomes more prevalent.

METHODS

Over a 6-month period, primary caregivers of 148 consecutive patients who received shunts were prospectively administered questionnaires at clinic visits. Caregivers were asked to do the following: 1) identify shunt valve name, type, and setting if applicable; 2) list symptoms of shunt malfunction/infection; and 3) indicate whether they had access to references regarding shunt type/setting, booklets from the Hydrocephalus Association, and quick reference cards with symptoms of shunt malfunction/infection. One cohort of caregivers (n = 75) was asked to carry informational cards with shunt valve/setting information (group I); this cohort was compared with another subgroup of caregivers (n = 73) not carrying cards (group II).

RESULTS

The mean (± SD) age of patients at implantation/revision was 3.71 ± 4.91 years, and the age at follow-up was 6.12 ± 5.4 years. The average time from surgery to administration of the questionnaire was 2.38 ± 3.22 years. There were 86 new shunt insertions and 62 revisions. One hundred twenty-eight caregivers (87%) could identify the type of valve (programmable vs nonprogrammable). On the other hand, only 72 caregivers (49%) could identify the valve name. Fifty-four of 73 (74%) caregivers of patients who had shunts with programmable valves could correctly identify the valve setting. One hundred caregivers (68%) had a copy of the Hydrocephalus Association booklet, and 103 (70%) had quick reference cards. Eighty caregivers (54%) had references on shunt type/setting. Most caregivers (127 [86%]) could name ≥ 3 signs/symptoms of shunt malfunction, with vomiting (61%), headache (49%), and sleeps more/lethargic (35%) most frequently reported. Caregivers of patients in group I were more likely to have cards with symptoms of shunt infection or malfunction (p = 0.015); have information cards regarding shunt type/setting (p < 0.001); and correctly identify valve type (p = 0.001), name (p < 0.001), and setting if programmable (p = 0.0016). There were no differences in ability to list symptoms of shunt malfunction or infection (p = 0.8812) or in access to Hydrocephalus Association booklets (p = 0.1288). There were no significant demographic differences between the groups, except that group I patients had a shorter time from surgery to last follow-up (1.66 vs 3.17 years; p = 0.0001).

CONCLUSIONS

Education regarding the care of patients with shunts by providing written cards with shunt type/setting and access to reference materials seems to be effective. Developing plans for guided instruction with assessment in the clinic setting of a caregiver’s knowledge is important for patient safety.

Restricted access

Robert H. Rosenwasser

Restricted access

Roukoz B. Chamoun, William E. Whitehead, Daniel J. Curry, Thomas G. Luerssen, and Andrew Jea

Object

The use of C-1 lateral mass screws provides an alternative to C1–2 transarticular screws in the pediatric population. However, the confined space of the local anatomy and unfamiliarity with the technique may make the placement of a C-1 lateral mass screw more challenging, especially in the juvenile or growing spine.

Methods

A CT morphometric analysis was performed in 76 pediatric atlases imaged at Texas Children's Hospital from October 1, 2007 until April 30, 2008. Critical measurements were determined for potential screw entry points, trajectories, and lengths, with the goal of replicating the operative technique described by Harms and Melcher for adult patients.

Results

The mean height and width for screw entry on the posterior surface of the lateral mass were 2.6 and 8.5 mm, respectively. The mean medially angled screw trajectory from an idealized entry point on the lateral mass was 16° (range 4 to 27°). The mean maximal screw depth from this same ideal entry point was 20.3 mm. The overhang of the posterior arch averaged 6.3 mm (range 2.1–12.4 mm). The measurement between the left- and right-side lateral masses was significantly different for the maximum medially angled screw trajectory (p = 0.003) and the maximum inferiorly directed angle (p = 0.045). Those measurements in children < 8 years of age were statistically significant for the entry point height (p = 0.038) and maximum laterally angled screw trajectory (p = 0.025) compared with older children. The differences between boys and girls were statistically significant for the minimum screw length (p = 0.04) and the anterior lateral mass height (p < 0.001).

Conclusions

A significant variation in the morphological features of C-1 exists, especially between the left and right sides and in younger children. The differences between boys and girls are clinically insignificant. The critical measurement of whether the C-1 lateral mass in a child could accommodate a 3.5-mm-diameter screw is the width of the lateral mass and its proximity to the vertebral artery. Only 1 of 152 lateral masses studied would not have been able to accommodate a lateral mass screw. This study reemphasizes the importance of a preoperative CT scan of the upper cervical spine to assure safe and effective placement of the instrumentation at this level.