Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Alireza M. Mohammadi x
Clear All Modify Search
Free access

Mayur Sharma, Ghaith Habboub, Mandana Behbahani, Danilo Silva, Gene H. Barnett and Alireza M. Mohammadi

OBJECTIVE

Laser interstitial thermal therapy (LITT) has been increasingly used to treat deep-seated tumors. Despite its being minimally invasive, there is a risk of LITT damaging adjacent critical structures, including corticospinal tracts (CSTs). In this study, the authors investigated the predictive value of overlap between the hyperthermic field and CSTs in determining postoperative motor deficit (PMDs).

METHODS

More than 140 patients underwent an LITT procedure in our institution between April 2011 and June 2015. Because of the tumor's proximity to critical structures, 80 of them underwent preoperative diffusion tensor imaging and were included in this study. Extent of the hyperthermic field was delineated by the software as thermal-damage-threshold (TDT) lines (yellow [43°C for 2 minutes], blue [43°C for 10 minutes], and white [43°C for 60 minutes]). The maximum volume and the surface area of overlaps between motor fibers and the TDT lines were calculated and compared with the PMDs.

RESULTS

High-grade glioma (n = 46) was the most common indication for LITT. Postoperative motor deficits (partial or complete) were seen in 14 patients (11 with permanent and 3 with temporary PMDs). The median overlap volumes between CSTs with yellow, blue, and white TDT lines in patients with any PMD (temporary or permanent) were 1.15, 0.68, and 0.41 cm3, respectively. The overlap volumes and surface areas revealed significant differences in those with PMDs and those with no deficits (p = 0.0019 and 0.003, 0.012 and 0.0012, and 0.001 and 0.005 for the yellow, blue, and white TDT lines, respectively). The receiver operating characteristic was used to select the optimal cutoff point of the overlapped volumes and areas. Cutoff points for overlap volumes and areas based on optimal sensitivity (92%–100%) and specificity (80%–90%) were 0.103, 0.068, and 0.046 cm3 and 0.15, 0.07, and 0.11 mm2 for the yellow, blue, and white TDT lines, respectively.

CONCLUSIONS

Even a minimal overlap between the TDT lines and CSTs can cause a PMD after LITT. Precise planning and avoidance of critical structures and important white matter fibers should be considered when treating deep-seated tumors.

Restricted access

Michael A. Vogelbaum, Cathy Brewer, Gene H. Barnett, Alireza M. Mohammadi, David M. Peereboom, Manmeet S. Ahluwalia and Shenqiang Gao

OBJECTIVE

Progress in management of high-grade gliomas (HGGs) has been hampered by poor access of potential therapeutics to the CNS. The Cleveland Multiport Catheter (CMC), which deploys 4 independent delivery microcatheters, was developed to be a reliable, high-volume delivery device for delivery of therapeutic agents to the brain and other solid organs. The authors undertook this first-in-human clinical trial effort to evaluate the delivery characteristics of the CMC in patients with HGGs.

METHODS

A series of pilot studies were launched after approval of a sponsor-investigator IND (investigational new drug) application to evaluate the delivery of topotecan and gadolinium-DTPA (Gd-DTPA) via the CMC in patients with recurrent HGG. The first pilot trial evaluated delivery into enhancing tumor and nonenhancing, tumor-infiltrated brain. Two catheters were placed with the use of a conventional frameless stereotactic technique following a biopsy to confirm tumor recurrence, and drug infusion was performed both intraoperatively and postoperatively for a total of 96 hours with the same rate for all microcatheters. Delivery was assessed by intermittent MRI.

RESULTS

Three patients were enrolled in the first pilot study. MRI demonstrated delivery from all 6 catheters (24 microcatheters). The volume of distribution (Vd) of Gd-DTPA was heavily dependent upon CMC location (enhancing vs nonenhancing) with an approximately 10-fold difference in Vd observed (p = 0.005). There were no hemorrhages related to catheter placement or removal, and all 3 patients completed the protocol-defined treatment.

CONCLUSIONS

The CMC is capable of providing backflow-resistant drug delivery to the brain and brain tumors. The volume of distribution is heavily dependent upon the integrity of the blood-brain barrier. Assessment of delivery is essential for development of loco-regionally applied therapeutics in the CNS.

Clinical trial registration no.: NCT02278510 (clinicaltrials.gov)

Free access

Mayur Sharma, Daria Krivosheya, Hamid Borghei-Razavi, Gene H. Barnett and Alireza M. Mohammadi

Laser interstitial thermal therapy (LITT) is a minimally invasive stereotactic technique that causes tumor ablation using thermal energy. LITT has shown to be efficacious for the treatment of deep-seated brain lesions, including those near eloquent areas. In this video, the authors present the case of a 62-year-old man with a history of metastatic melanoma who presented with worsening right-sided hemiparesis. MRI revealed a contrast-enhancing lesion in left centrum semiovale in close proximity to corticospinal tracts, consistent with radiation necrosis. The authors review their stepwise technique of LITT with special attention to details for a lesion located near eloquent area.

The video can be found here: https://youtu.be/ndrTgi6MXqE.

Restricted access

Rupesh Kotecha, Jacob A. Miller, Vyshak A. Venur, Alireza M. Mohammadi, Samuel T. Chao, John H. Suh, Gene H. Barnett, Erin S. Murphy, Pauline Funchain, Jennifer S. Yu, Michael A. Vogelbaum, Lilyana Angelov and Manmeet S. Ahluwalia

OBJECTIVE

The goal of this study was to investigate the impact of stereotactic radiosurgery (SRS), BRAF status, and targeted and immune-based therapies on the recurrence patterns and factors associated with overall survival (OS) among patients with melanoma brain metastasis (MBM).

METHODS

A total of 366 patients were treated for 1336 MBMs; a lesion-based analysis was performed on 793 SRS lesions. The BRAF status was available for 78 patients: 35 had BRAF mut and 43 had BRAF wild-type (BRAF-WT) lesions. The Kaplan-Meier method evaluated unadjusted OS; cumulative incidence analysis determined the incidences of local failure (LF), distant failure, and radiation necrosis (RN), with death as a competing risk.

RESULTS

The 12-month OS was 24% (95% CI 20%–29%). On multivariate analysis, younger age, lack of extracranial metastases, better Karnofsky Performance Status score, and fewer MBMs, as well as treatment with BRAF inhibitors (BRAFi), anti–PD-1/CTLA-4 therapy, or cytokine therapy were significantly associated with OS. For patients who underwent SRS, the 12-month LF rate was lower among those with BRAF mut lesions (6%, 95% CI 2%–11%) compared with those with BRAF-WT lesions (22%, 95% CI 13%–32%; p < 0.01). The 12-month LF rates among lesions treated with BRAFi and PD-1/CTLA-4 agents were 1% (95% CI 1%–4%) and 7% (95% CI 1%–13%), respectively. On multivariate analysis, BRAF inhibition within 30 days of SRS was protective against LF (HR 0.08, 95% CI 0.01–0.55; p = 0.01). The 12-month rates of RN were low among lesions treated with BRAFi (0%, 95% CI 0%–0%), PD-1/CTLA-4 inhibitors (2%, 95% CI 1%–5%), and cytokine therapies (6%, 95% CI 1%–13%).

CONCLUSIONS

Prognostic schema should incorporate BRAFi or immunotherapy status and use of targeted therapies. Treatment with a BRAF inhibitor within 4 weeks of SRS improves local control without an increased risk of RN.

Free access

Mir Amaan Ali, Kate T. Carroll, Robert C. Rennert, Thomas Hamelin, Leon Chang, Brian P. Lemkuil, Mayur Sharma, Jill S. Barnholtz-Sloan, Charlotte Myers, Gene H. Barnett, Kris Smith, Alireza M. Mohammadi, Andrew E. Sloan and Clark C. Chen

OBJECTIVE

Therapeutic options for brain metastases (BMs) that recur after stereotactic radiosurgery (SRS) remain limited.

METHODS

The authors provide the collective experience of 4 institutions where treatment of BMs that recurred after SRS was performed with stereotactic laser ablation (SLA).

RESULTS

Twenty-six BMs (in 23 patients) that recurred after SRS were treated with SLA (2 patients each underwent 2 SLAs for separate lesions, and a third underwent 2 serial SLAs for discrete BMs). Histological findings in the BMs treated included the following: breast (n = 6); lung (n = 6); melanoma (n = 5); colon (n = 2); ovarian (n = 1); bladder (n = 1); esophageal (n = 1); and sarcoma (n = 1). With a median follow-up duration of 141 days (range 64–794 days), 9 of the SLA-treated BMs progressed despite treatment (35%). All cases of progression occurred in BMs in which < 80% ablation was achieved, whereas no disease progression was observed in BMs in which ≥ 80% ablation was achieved. Five BMs were treated with SLA, followed 1 month later by adjuvant SRS (5 Gy daily × 5 days). No disease progression was observed in these patients despite ablation efficiency of < 80%, suggesting that adjuvant hypofractionated SRS enhances the efficacy of SLA. Of the 23 SLA-treated patients, 3 suffered transient hemiparesis (13%), 1 developed hydrocephalus requiring temporary ventricular drainage (4%), and 1 patient who underwent SLA of a 28.9-cm3 lesion suffered a neurological deficit requiring an emergency hemicraniectomy (4%). Although there is significant heterogeneity in corticosteroid treatment post-SLA, most patients underwent a 2-week taper.

CONCLUSIONS

Stereotactic laser ablation is an effective treatment option for BMs in which SRS fails. Ablation of ≥ 80% of BMs is associated with decreased risk of disease progression. The efficacy of SLA in this setting may be augmented by adjuvant hypofractionated SRS.

Full access

Alireza M. Mohammadi, Jason L. Schroeder, Lilyana Angelov, Samuel T. Chao, Erin S. Murphy, Jennifer S. Yu, Gennady Neyman, Xuefei Jia, John H. Suh, Gene H. Barnett and Michael A. Vogelbaum

OBJECTIVE

The impact of the stereotactic radiosurgery (SRS) prescription dose (PD) on local progression and radiation necrosis for small (≤ 2 cm) brain metastases was evaluated.

METHODS

An institutional review board–approved retrospective review was performed on 896 patients with brain metastases ≤ 2 cm (3034 tumors) who were treated with 1229 SRS procedures between 2000 and 2012. Local progression and/or radiation necrosis were the primary end points. Each tumor was followed from the date of radiosurgery until one of the end points was reached or the last MRI follow-up. Various criteria were used to differentiate tumor progression and radiation necrosis, including the evaluation of serial MRIs, cerebral blood volume on perfusion MR, FDG-PET scans, and, in some cases, surgical pathology. The median radiographic follow-up per lesion was 6.2 months.

RESULTS

The median patient age was 56 years, and 56% of the patients were female. The most common primary pathology was non–small cell lung cancer (44%), followed by breast cancer (19%), renal cell carcinoma (14%), melanoma (11%), and small cell lung cancer (5%). The median tumor volume and median largest diameter were 0.16 cm3 and 0.8 cm, respectively. In total, 1018 lesions (34%) were larger than 1 cm in maximum diameter. The PD for 2410 tumors (80%) was 24 Gy, for 408 tumors (13%) it was 19 to 23 Gy, and for 216 tumors (7%) it was 15 to 18 Gy. In total, 87 patients (10%) had local progression of 104 tumors (3%), and 148 patients (17%) had at least radiographic evidence of radiation necrosis involving 199 tumors (7%; 4% were symptomatic). Univariate and multivariate analyses were performed for local progression and radiation necrosis. For local progression, tumors less than 1 cm (subhazard ratio [SHR] 2.32; p < 0.001), PD of 24 Gy (SHR 1.84; p = 0.01), and additional whole-brain radiation therapy (SHR 2.53; p = 0.001) were independently associated with better outcome. For the development of radiographic radiation necrosis, independent prognostic factors included size greater than 1 cm (SHR 2.13; p < 0.001), location in the corpus callosum (SHR 5.72; p < 0.001), and uncommon pathologies (SHR 1.65; p = 0.05). Size (SHR 4.78; p < 0.001) and location (SHR 7.62; p < 0.001)—but not uncommon pathologies—were independent prognostic factors for the subgroup with symptomatic radiation necrosis.

CONCLUSIONS

A PD of 24 Gy results in significantly better local control of metastases measuring < 2 cm than lower doses. In addition, tumor size is an independent prognostic factor for both local progression and radiation necrosis. Some tumor pathologies and locations may also contribute to an increased risk of radiation necrosis.

Restricted access

Mayur Sharma, Jason L. Schroeder, Paul Elson, Antonio Meola, Gene H. Barnett, Michael A. Vogelbaum, John H. Suh, Samuel T. Chao, Alireza M. Mohammadi, Glen H. J. Stevens, Erin S. Murphy and Lilyana Angelov

OBJECTIVE

Glioblastoma (GBM) is the most malignant form of astrocytoma. The average survival is 6–10 months in patients with recurrent GBM (rGBM). In this study, the authors evaluated the role of stereotactic radiosurgery (SRS) in patients with rGBMs.

METHODS

The authors performed a retrospective review of their brain tumor database (1997–2016). Overall survival (OS) and progression-free survival (PFS) after salvage SRS were the primary endpoints evaluated. Response to SRS was assessed using volumetric MR images.

RESULTS

Fifty-three patients with rGBM underwent salvage SRS targeting 75 lesions. The median tumor diameter and volume were 2.55 cm and 3.80 cm3, respectively. The median prescription dose was 18 Gy (range 12–24 Gy) and the homogeneity index was 1.90 (range 1.11–2.02). The median OS after salvage SRS was estimated to be 11.0 months (95% CI 7.1–12.2) and the median PFS after salvage SRS was 4.4 months (95% CI 3.7–5.0). A Karnofsky Performance Scale score ≥ 80 was independently associated with longer OS, while small tumor volume (< 15 cm3) and less homogeneous treatment plans (homogeneity index > 1.75) were both independently associated with longer OS (p = 0.007 and 0.03) and PFS (p = 0.01 and 0.002, respectively). Based on these factors, 2 prognostic groups were identified for PFS (5.4 vs 3.2 months), while 3 were identified for OS (median OS of 15.2 vs 10.5 vs 5.2 months).

CONCLUSIONS

SRS is associated with longer OS and/or PFS in patients with good performance status, small-volume tumor recurrences, and heterogeneous treatment plans. The authors propose a prognostic model to identify a cohort of rGBM patients who may benefit from SRS.

Full access

Jacob A. Miller, Ehsan H. Balagamwala, Camille A. Berriochoa, Lilyana Angelov, John H. Suh, Edward C. Benzel, Alireza M. Mohammadi, Todd Emch, Anthony Magnelli, Andrew Godley, Peng Qi and Samuel T. Chao

OBJECTIVE

Spine stereotactic radiosurgery (SRS) is a safe and effective treatment for spinal metastases. However, it is unknown whether this highly conformal radiation technique is suitable at instrumented sites given the potential for microscopic disease seeding. The authors hypothesized that spinal decompression with instrumentation is not associated with increased local failure (LF) following SRS.

METHODS

A 2:1 propensity-matched retrospective cohort study of patients undergoing SRS for spinal metastasis was conducted. Patients with less than 1 month of radiographic follow-up were excluded. Each SRS treatment with spinal decompression and instrumentation was propensity matched to 2 controls without decompression or instrumentation on the basis of demographic, disease-related, dosimetric, and treatment-site characteristics. Standardized differences were used to assess for balance between matched cohorts.

The primary outcome was the 12-month cumulative incidence of LF, with death as a competing risk. Lesions demonstrating any in-field progression were considered LFs. Secondary outcomes of interest were post-SRS pain flare, vertebral compression fracture, instrumentation failure, and any Grade ≥ 3 toxicity. Cumulative incidences analysis was used to estimate LF in each cohort, which were compared via Gray’s test. Multivariate competing-risks regression was then used to adjust for prespecified covariates.

RESULTS

Of 650 candidates for the control group, 166 were propensity matched to 83 patients with instrumentation. Baseline characteristics were well balanced. The median prescription dose was 16 Gy in each cohort. The 12-month cumulative incidence of LF was not statistically significantly different between cohorts (22.8% [instrumentation] vs 15.8% [control], p = 0.25). After adjusting for the prespecified covariates in a multivariate competing-risks model, decompression with instrumentation did not contribute to a greater risk of LF (HR 1.21, 95% CI 0.74–1.98, p = 0.45). The incidences of post-SRS pain flare (11% vs 14%, p = 0.55), vertebral compression fracture (12% vs 22%, p = 0.04), and Grade ≥ 3 toxicity (1% vs 1%, p = 1.00) were not increased at instrumented sites. No instrumentation failures were observed.

CONCLUSIONS

In this propensity-matched analysis, LF and toxicity were similar among cohorts, suggesting that decompression with instrumentation does not significantly impact the efficacy or safety of spine SRS. Accordingly, spinal instrumentation may not be a contraindication to SRS. Future studies comparing SRS to conventional radiotherapy at instrumented sites in matched populations are warranted.

Restricted access

Shireen Parsai, Jacob A. Miller, Aditya Juloori, Samuel T. Chao, Rupesh Kotecha, Alireza M. Mohammadi, Manmeet S. Ahluwalia, Erin S. Murphy, Gene H. Barnett, Michael A. Vogelbaum, Lilyana Angelov, David M. Peereboom and John H. Suh

OBJECTIVE

With increasing survival for patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer in the trastuzumab era, there is an increased risk of brain metastasis. Therefore, there is interest in optimizing intracranial disease control. Lapatinib is a small-molecule dual HER2/epidermal growth factor receptor inhibitor that has demonstrated intracranial activity against HER2+ breast cancer brain metastases. The objective of this study was to investigate the impact of lapatinib combined with stereotactic radiosurgery (SRS) on local control of brain metastases.

METHODS

Patients with HER2+ breast cancer brain metastases who underwent SRS from 1997–2015 were included. The primary outcome was the cumulative incidence of local failure following SRS. Secondary outcomes included the cumulative incidence of radiation necrosis and overall survival.

RESULTS

One hundred twenty-six patients with HER2+ breast cancer who underwent SRS to 479 brain metastases (median 5 lesions per patient) were included. Among these, 75 patients had luminal B subtype (hormone receptor-positive, HER2+) and 51 patients had HER2-enriched histology (hormone receptor-negative, HER2+). Forty-seven patients received lapatinib during the course of their disease, of whom 24 received concurrent lapatinib with SRS. The median radiographic follow-up among all patients was 17.1 months. Concurrent lapatinib was associated with reduction in local failure at 12 months (5.7% vs 15.1%, p < 0.01). For lesions in the ≤ 75th percentile by volume, concurrent lapatinib significantly decreased local failure. However, for lesions in the > 75th percentile (> 1.10 cm3), concurrent lapatinib did not significantly improve local failure. Any use of lapatinib after development of brain metastasis improved median survival compared to SRS without lapatinib (27.3 vs 19.5 months, p = 0.03). The 12-month risk of radiation necrosis was consistently lower in the lapatinib cohort compared to the SRS-alone cohort (1.3% vs 6.3%, p < 0.01), despite extended survival.

CONCLUSIONS

For patients with HER2+ breast cancer brain metastases, the use of lapatinib concurrently with SRS improved local control of brain metastases, without an increased rate of radiation necrosis. Concurrent lapatinib best augments the efficacy of SRS for lesions ≤ 1.10 cm3 in volume. In patients who underwent SRS for HER2+ breast cancer brain metastases, the use of lapatinib at any time point in the therapy course was associated with a survival benefit. The use of lapatinib combined with radiosurgery warrants further prospective evaluation.

Restricted access

Aditya Juloori, Jacob A. Miller, Shireen Parsai, Rupesh Kotecha, Manmeet S. Ahluwalia, Alireza M. Mohammadi, Erin S. Murphy, John H. Suh, Gene H. Barnett, Jennifer S. Yu, Michael A. Vogelbaum, Brian Rini, Jorge Garcia, Glen H. Stevens, Lilyana Angelov and Samuel T. Chao

OBJECTIVE

The object of this retrospective study was to investigate the impact of targeted therapies on overall survival (OS), distant intracranial failure, local failure, and radiation necrosis among patients treated with radiation therapy for renal cell carcinoma (RCC) metastases to the brain.

METHODS

All patients diagnosed with RCC brain metastasis (BM) between 1998 and 2015 at a single institution were included in this study. The primary outcome was OS, and secondary outcomes included local failure, distant intracranial failure, and radiation necrosis. The timing of targeted therapies was recorded. Multivariate Cox proportional-hazards regression was used to model OS, while multivariate competing-risks regression was used to model local failure, distant intracranial failure, and radiation necrosis, with death as a competing risk.

RESULTS

Three hundred seventy-six patients presented with 912 RCC BMs. Median OS was 9.7 months. Consistent with the previously validated diagnosis-specific graded prognostic assessment (DS-GPA) for RCC BM, Karnofsky Performance Status (KPS) and number of BMs were the only factors prognostic for OS. One hundred forty-seven patients (39%) received vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs). Median OS was significantly greater among patients receiving TKIs (16.8 vs 7.3 months, p < 0.001). Following multivariate analysis, KPS, number of metastases, and TKI use remained significantly associated with OS.

The crude incidence of local failure was 14.9%, with a 12-month cumulative incidence of 13.4%. TKIs did not significantly decrease the 12-month cumulative incidence of local failure (11.4% vs 14.5%, p = 0.11). Following multivariate analysis, age, number of BMs, and lesion size remained associated with local failure. The 12-month cumulative incidence of radiation necrosis was 8.0%. Use of TKIs within 30 days of SRS was associated with a significantly increased 12-month cumulative incidence of radiation necrosis (10.9% vs 6.4%, p = 0.04).

CONCLUSIONS

Use of targeted therapies in patients with RCC BM treated with intracranial SRS was associated with improved OS. However, the use of TKIs within 30 days of SRS increases the rate of radiation necrosis without improving local control or reducing distant intracranial failure. Prospective studies are warranted to determine the optimal timing to reduce the rate of necrosis without detracting from survival.