Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ali Kiapour x
Clear All Modify Search
Restricted access

Ali Kiapour, D. Greg Anderson, David B. Spenciner, Lisa Ferrara and Vijay K. Goel


Lumbar spinal stenosis (LSS) may lead to disabling neurogenic symptoms and has traditionally been treated using open laminectomy. A new technique for correcting LSS involves lengthening the lumbar pedicles through bilateral percutaneous pedicle osteotomies. In this paper, the authors' goal was to evaluate the changes in spinal canal dimensions and kinematic behavior after pedicle-lengthening osteotomies.


The kinematic behavior of 8 cadaveric lumbar segments was evaluated intact and after bilateral pedicle-lengthening osteotomies at the L-4, L-5, and L-4 and L-5 levels. Testing was conducted with and without a compressive preload using a custom kinematic apparatus that allowed for 3D tracking of each vertebra during flexion-extension, right-left bending, and right-left rotation. A validated finite element (FE) spine model was used to measure the changes in the cross-sectional area of the spinal canal and neural foramen after 2-, 3-, and 4.5-mm simulated pedicle-lengthening osteotomy procedures.


The overall and segmental kinematics were not significantly altered after the pedicle-lengthening osteotomy procedure at the L-4 and/or L-5 pedicles. The kinematic signatures of the intact and lengthened states were similar for all motion pairs. The FE spine model yielded kinematics predictions within or close to the 95% confidence interval for the cadaveric data. The FE spine demonstrated substantial, pedicle length–dependent enlargement of the cross-sectional areas of the spinal canal and neural foramen after simulated pedicle lengthening.


Bilateral pedicle-lengthening osteotomies produced substantial increases in the cross-sectional areas of the spinal canal and neural foramen without significantly altering normal spinal kinematics. This technique deserves further study as a less invasive treatment option for LSS.

Restricted access

Predicting tumor-specific survival in patients with spinal metastatic renal cell carcinoma: which scoring system is most accurate?

Presented at the 2020 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Elie Massaad, Muhamed Hadzipasic, Christopher Alvarez-Breckenridge, Ali Kiapour, Nida Fatima, Joseph H. Schwab, Philip Saylor, Kevin Oh, Andrew J. Schoenfeld, Ganesh M. Shankar and John H. Shin


Although several prognostic scores for spinal metastatic disease have been developed in the past 2 decades, the applicability and validity of these models to specific cancer types are not yet clear. Most of the data used for model formation are from small population sets and have not been updated or externally validated to assess their performance. Developing predictive models is clinically relevant as prognostic assessment is crucial to optimal decision-making, particularly the decision for or against spine surgery. In this study, the authors investigated the performance of various spinal metastatic disease risk models in predicting prognosis for spine surgery to treat metastatic renal cell carcinoma (RCC).


Data of patients who underwent surgery for RCC metastatic to the spine at 2 tertiary centers between 2010 and 2019 were retrospectively retrieved. The authors determined the prognostic value associated with the following scoring systems: the Tomita score, original and revised Tokuhashi scores, original and modified Bauer scores, Katagiri score, the Skeletal Oncology Research Group (SORG) classic algorithm and nomogram, and the New England Spinal Metastasis Score (NESMS). Regression analysis of patient variables in association with 1-year survival after surgery was assessed using Cox proportional hazard models. Calibration and time-dependent discrimination analysis were tested to quantify the accuracy of each scoring system at 3 months, 6 months, and 1 year.


A total of 86 metastatic RCC patients were included (median age 64 years [range 29–84 years]; 63 males [73.26%]). The 1-year survival rate was 72%. The 1-year survival group had a good performance status (Karnofsky Performance Scale [KPS] score 80%–100%) and an albumin level > 3.5 g/dL (p < 0.05). Multivariable-adjusted Cox regression analysis showed that poor performance status (KPS score < 70%), neurological deficit (Frankel grade A–D), and hypoalbuminemia (< 3.5 g/dL) were associated with a higher risk of death before 1 year (p < 0.05). The SORG nomogram, SORG classic, original Tokuhashi, and original Bauer demonstrated fair performance (0.7 < area under the curve < 0.8). The NESMS differentiates survival among the prognostic categories with the highest accuracy (area under the curve > 0.8).


The present study shows that the most cited and commonly used scoring systems have a fair performance predicting survival for patients undergoing spine surgery for metastatic RCC. The NESMS had the best performance at predicting 1-year survival after surgery.