Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Alfonso Fasano x
  • All content x
Clear All Modify Search
Full access

Christopher S. Lozano, Manish Ranjan, Alexandre Boutet, David S. Xu, Walter Kucharczyk, Alfonso Fasano, and Andres M. Lozano

OBJECTIVE

The clinical results of deep brain stimulation (DBS) of the subthalamic nucleus (STN) are highly dependent on accurate targeting and target implantation. Several targeting tactics are in current use, including image-only and/or electrophysiologically guided approaches using microelectrode recordings (MERs). The purpose of the present study was to make an appraisal of imaging only–based versus imaging with the addition of intraoperative MER-guided STN electrode targeting.

METHODS

The authors evaluated 100 consecutive patients undergoing STN DBS. The position of the STN target was estimated from preoperative MR images (direct target) or in relation to the position of the anterior and posterior commissures (indirect target). MERs were obtained for each trajectory. The authors tracked which targets were adjusted intraoperatively as a consequence of MER data. The final placement of 182 total STN electrodes was validated by intraoperative macrostimulation through the implanted DBS electrodes. The authors compared the image-based direct, indirect, MER-guided target adjustments and the final coordinates of the electrodes as seen on postoperative MRI.

RESULTS

In approximately 80% of the trajectories, there was a good correspondence between the imaging-based and the MER-guided localization of the STN target. In approximately 20% of image-based targeting trajectories, however, the electrophysiological data revealed that the trajectory was suboptimal, missing the important anatomical structures to a significant extent. The greatest mismatch was in the superior-inferior axis, but this had little impact because it could be corrected without changing trajectories. Of more concern were mismatches of 2 mm or more in the mediolateral (x) or anteroposterior (y) planes, discrepancies that necessitated a new targeting trajectory to correct for the mis-targeting. The incidence of mis-targetting requiring a second MER trajectory on the first and second sides was similar (18% and 22%).

CONCLUSIONS

According to the present analysis, approximately 80% of electrodes were appropriately targeted using imaging alone. In the other 20%, imaging alone led to suboptimal targeting that could be corrected by a trajectory course correction guided by the acquired MER data. The authors’ results suggest that preoperative imaging is insufficient to obtain optimal results in all patients undergoing STN DBS.

Restricted access

Philippe De Vloo, Luka Milosevic, Robert M. Gramer, David Hernán Aguirre-Padilla, Robert F. Dallapiazza, Darrin J. Lee, William D. Hutchison, Alfonso Fasano, and Andres M. Lozano

The authors report on a female patient with left-dominant Parkinson’s disease with motor fluctuations and levodopa-induced dyskinesias and comorbid postherpetic neuralgia (PHN), who underwent a right-sided pallidotomy. Besides a substantial improvement in her Parkinson’s symptoms, she reported an immediate and complete disappearance of PHN. This neuralgia had been long-standing, pharmacologically refractory, and severe (preoperative Brief Pain Inventory [BPI] pain severity score of 8.0, BPI pain interference score of 7.3, short-form McGill Pain Questionnaire sensory pain rating index of 7 and affective pain rating index of 10, Present Pain Intensity rank value of 4, and visual analog scale score of 81 mm; all postoperative scores were 0). She continued to be pain free at 16 months postoperatively.

This peculiar finding adds substantially to the largely unrecognized evidence for the role of the pallidum in pain processing, based on previous electrophysiological, metabolic, anatomical, pharmacological, and clinical observations. Therefore, the potential of the pallidum as a neurosurgical target for neuropathic pain warrants further investigation.

Restricted access

Darrin J. Lee, Luka Milosevic, Robert Gramer, Sanskriti Sasikumar, Tameem M. Al-Ozzi, Philippe De Vloo, Robert F. Dallapiazza, Gavin J. B. Elias, Melanie Cohn, Suneil K. Kalia, William D. Hutchison, Alfonso Fasano, and Andres M. Lozano

OBJECTIVE

Neuronal loss within the cholinergic nucleus basalis of Meynert (nbM) correlates with cognitive decline in dementing disorders such as Alzheimer’s disease and Parkinson’s disease (PD). In nonhuman primates, the nbM firing pattern (5–40 Hz) has also been correlated with working memory and sustained attention. In this study, authors performed microelectrode recordings of the globus pallidus pars interna (GPi) and the nbM immediately prior to the implantation of bilateral deep brain stimulation (DBS) electrodes in PD patients to treat motor symptoms and cognitive impairment, respectively. Here, the authors evaluate the electrophysiological properties of the nbM in patients with PD.

METHODS

Five patients (4 male, mean age 66 ± 4 years) with PD and mild cognitive impairment underwent bilateral GPi and nbM DBS lead implantation. Microelectrode recordings were performed through the GPi and nbM along a single trajectory. Firing rates and burst indices were characterized for each neuronal population with the patient at rest and performing a sustained-attention auditory oddball task. Action potential (AP) depolarization and repolarization widths were measured for each neuronal population at rest.

RESULTS

In PD patients off medication, the authors identified neuronal discharge rates that were specific to each area populated by GPi cells (92.6 ± 46.1 Hz), border cells (34 ± 21 Hz), and nbM cells (13 ± 10 Hz). During the oddball task, firing rates of nbM cells decreased (2.9 ± 0.9 to 2.0 ± 1.1 Hz, p < 0.05). During baseline recordings, the burst index for nbM cells (1.7 ± 0.6) was significantly greater than those for GPi cells (1.2 ± 0.2, p < 0.05) and border cells (1.1 ± 0.1, p < 0.05). There was no significant difference in the nbM burst index during the oddball task relative to baseline (3.4 ± 1.7, p = 0.20). With the patient at rest, the width of the depolarization phase of APs did not differ among the GPi cells, border cells, and nbM cells (p = 0.60); however, during the repolarization phase, the nbM spikes were significantly longer than those for GPi high-frequency discharge cells (p < 0.05) but not the border cells (p = 0.20).

CONCLUSIONS

Neurons along the trajectory through the GPi and nbM have distinct firing patterns. The profile of nbM activity is similar to that observed in nonhuman primates and is altered during a cognitive task associated with cholinergic activation. These findings will serve to identify these targets intraoperatively and form the basis for further research to characterize the role of the nbM in cognition.

Free access

Alireza Mansouri, Shervin Taslimi, Jetan H. Badhiwala, Christopher D. Witiw, Farshad Nassiri, Vincent J. J. Odekerken, Rob M. A. De Bie, Suneil K. Kalia, Mojgan Hodaie, Renato P. Munhoz, Alfonso Fasano, and Andres M. Lozano

OBJECTIVE

Deep brain stimulation (DBS) is effective in the management of patients with advanced Parkinson’s disease (PD). While both the globus pallidus pars interna (GPi) and the subthalamic nucleus (STN) are accepted targets, their relative efficacy in randomized controlled trials (RCTs) has not been established beyond 12 months. The objective of this study was to conduct a meta-analysis of RCTs to compare outcomes among adults with PD undergoing DBS of GPi or STN at various time points, including 36 months of follow-up.

METHODS

The MEDLINE, Embase, CENTRAL, Web of Science, and CINAHL databases were searched. Registries for clinical trials, selected conference proceedings, and the table of contents for selected journals were also searched. Screens were conducted independently and in duplicate. Among the 623 studies initially identified (615 through database search, 7 through manual review of bibliographies, and 1 through a repeat screen of literature prior to submission), 19 underwent full-text review; 13 of these were included in the quantitative meta-analysis. Data were extracted independently and in duplicate. The Cochrane Collaboration tool was used to assess the risk of bias. The GRADE evidence profile tool was used to assess the quality of the evidence. Motor scores, medication dosage reduction, activities of daily living, depression, dyskinesias, and adverse events were compared. The influence of disease duration (a priori) and the proportion of male patients within a study (post hoc) were explored as potential subgroups.

RESULTS

Thirteen studies (6 original cohorts) were identified. No difference in motor scores or activities of daily living was identified at 36 months. Medications were significantly reduced with STN stimulation (5 studies, weighted mean difference [WMD] −365.46, 95% CI −599.48 to −131.44, p = 0.002). Beck Depression Inventory scores were significantly better with GPi stimulation (3 studies; WMD 2.53, 95% CI 0.99–4.06 p = 0.001). The motor benefits of GPi and STN DBS for PD are similar.

CONCLUSIONS

The motor benefits achieved with GPi and STN DBS for PD are similar. DBS of STN allows for a greater reduction of medication, but not as significant an advantage as DBS of GPi with respect to mood. This difference is sustained at 36 months. Further long-term studies are necessary.

Restricted access

Manish Ranjan, Gavin J. B. Elias, Alexandre Boutet, Jidan Zhong, Powell Chu, Jurgen Germann, Gabriel A. Devenyi, M. Mallar Chakravarty, Alfonso Fasano, Kullervo Hynynen, Nir Lipsman, Clement Hamani, Walter Kucharczyk, Michael L. Schwartz, Andres M. Lozano, and Mojgan Hodaie

OBJECTIVE

Tractography-based targeting of the thalamic ventral intermediate nucleus (T-VIM) is a novel method conferring patient-specific selection of VIM coordinates for tremor surgery; however, its accuracy and clinical utility in magnetic resonance imaging–guided focused ultrasound (MRgFUS) thalamotomy compared to conventional indirect targeting has not been specifically addressed. This retrospective study sought to compare the treatment locations and potential adverse effect profiles of T-VIM with indirect targeting in a large cohort of MRgFUS thalamotomy patients.

METHODS

T-VIM was performed using diffusion tractography outlining the pyramidal and medial lemniscus tracts in 43 MRgFUS thalamotomy patients. T-VIM coordinates were compared with the indirect treatment coordinates used in the procedure. Thalamotomy lesions were delineated on postoperative T1-weighted images and displaced (“translated”) by the anteroposterior and mediolateral difference between T-VIM and treatment coordinates. Both translated and actual lesions were normalized to standard space and subsequently overlaid with areas previously reported to be associated with an increased risk of motor and sensory adverse effects when lesioned during MRgFUS thalamotomy.

RESULTS

T-VIM coordinates were 2.18 mm anterior and 1.82 mm medial to the “final” indirect treatment coordinates. Translated lesions lay more squarely within the boundaries of the VIM compared to nontranslated lesions and showed significantly less overlap with areas associated with sensory adverse effects. Translated lesions overlapped less with areas associated with motor adverse effects; however, this difference was not significant.

CONCLUSIONS

T-VIM leads to the selection of more anterior and medial coordinates than the conventional indirect methods. Lesions moved toward these anteromedial coordinates avoid areas associated with an increased risk of motor and sensory adverse effects, suggesting that T-VIM may improve clinical outcomes.

Restricted access

Alexandre Boutet, Dave Gwun, Robert Gramer, Manish Ranjan, Gavin J. B. Elias, David Tilden, Yuexi Huang, Stanley Xiangyu Li, Benjamin Davidson, Hua Lu, Pascal Tyrrell, Ryan M. Jones, Alfonso Fasano, Kullervo Hynynen, Walter Kucharczyk, Michael L. Schwartz, and Andres M. Lozano

OBJECTIVE

Transcranial MR-guided focused ultrasound (MRgFUS) is a minimally invasive treatment for movement disorders. Considerable interpatient variability in skull transmission efficiency exists with the current clinical devices, which is thought to be dependent on each patient’s specific skull morphology. Lower skull density ratio (SDR) values are thought to impede acoustic energy transmission across the skull, attenuating or preventing the therapeutic benefits of MRgFUS. Patients with SDR values below 0.4 have traditionally been deemed poor candidates for MRgFUS. Although considerable anecdotal evidence has suggested that SDR is a reliable determinant of procedural and clinical success, relationships between SDR and clinical outcomes have yet to be formally investigated. Moreover, as transcranial MRgFUS is becoming an increasingly widespread procedure, knowledge of SDR distribution in the general population may enable improved preoperative counseling and preparedness.

METHODS

A total of 98 patients who underwent MRgFUS thalamotomy at the authors’ institutions between 2012 and 2018 were analyzed (cohort 1). The authors retrospectively assessed the relationships between SDR and various clinical outcomes, including tremor improvement and adverse effects, as well as procedural factors such as sonication parameters. An SDR was also prospectively obtained in 163 random emergency department patients who required a head CT scan for various clinical indications (cohort 2). Patients’ age and sex were used to explore relationships with SDR.

RESULTS

In the MRgFUS treatment group, 17 patients with a thalamotomy lesion had an SDR below 0.4. Patients with lower SDRs required more sonication energy; however, their low SDR did not influence their clinical outcomes. In the emergency department patient group, about one-third of the patients had a low SDR (< 0.4). SDR did not correlate with age or sex.

CONCLUSIONS

Although lower SDR values correlated with higher energy requirements during MRgFUS thalamotomy, within the range of this study population, the SDR did not appreciably impact or provide the ability to predict the resulting clinical outcomes. Sampling of the general population suggests that age and sex have no relationship with SDR. Other variables, such as local variances in bone density, should also be carefully reviewed to build a comprehensive appraisal of a patient’s suitability for MRgFUS treatment.

Restricted access

Alexandre Boutet, Gavin J. B. Elias, Robert Gramer, Clemens Neudorfer, Jürgen Germann, Asma Naheed, Nicole Bennett, Bryan Li, Dave Gwun, Clement T. Chow, Ricardo Maciel, Alejandro Valencia, Alfonso Fasano, Renato P. Munhoz, Warren Foltz, David Mikulis, Ileana Hancu, Suneil K. Kalia, Mojgan Hodaie, Walter Kucharczyk, and Andres M. Lozano

OBJECTIVE

Many centers are hesitant to perform clinically indicated MRI in patients who have undergone deep brain stimulation (DBS). Highly restrictive guidelines prohibit the use of most routine clinical MRI protocols in these patients. The authors’ goals were to assess the safety of spine MRI in patients with implanted DBS devices, first through phantom model testing and subsequently through validation in a DBS patient cohort.

METHODS

A phantom was used to assess DBS device heating during 1.5-T spine MRI. To establish a safe spine protocol, routinely used clinical sequences deemed unsafe (a rise in temperature > 2°C) were modified to decrease the rise in temperature. This safe phantom-based protocol was then used to prospectively run 67 spine MRI sequences in 9 DBS participants requiring clinical imaging. The primary outcome was acute adverse effects; secondary outcomes included long-term adverse clinical effects, acute findings on brain MRI, and device impedance stability.

RESULTS

The increases in temperature were highest when scanning the cervical spine and lowest when scanning the lumbar spine. A temperature rise < 2°C was achieved when 3D sequences were modified to 2D and when the number of slices was decreased by the minimum amount compared to routine spine MRI protocols (but there were still more slices than allowed by vendor guidelines). Following spine MRI, no acute or long-term adverse effects or acute findings on brain MR images were detected. Device impedances remained stable.

CONCLUSIONS

Patients with DBS devices may safely undergo spine MRI with a fewer number of slices compared to those used in routine clinical protocols. Safety data acquisition may allow protocols outside vendor guidelines with a maximized number of slices, reducing the need for radiologist supervision.

Clinical trial registration no.: NCT03753945 (ClinicalTrials.gov).