Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Alexis D. Smith x
  • All content x
Clear All Modify Search
Restricted access

Virginie Lafage, Frank Schwab, Shaleen Vira, Robert Hart, Douglas Burton, Justin S. Smith, Oheneba Boachie-Adjei, Alexis Shelokov, Richard Hostin, Christopher I. Shaffrey, Munish Gupta, Behrooz A. Akbarnia, Shay Bess, and Jean-Pierre Farcy


Pedicle subtraction osteotomy (PSO) is a spinal realignment technique that may be used to correct sagittal spinal imbalance. Theoretically, the level and degree of resection via a PSO should impact the degree of sagittal plane correction in the setting of deformity. However, the quantitative effect of PSO level and focal angular change on postoperative spinopelvic parameters has not been well described. The purpose of this study is to analyze the relationship between the level/degree of PSO and changes in global sagittal balance and spinopelvic parameters.


In this multicenter retrospective study, 70 patients (54 women and 16 men) underwent lumbar PSO surgery for spinal imbalance. Preoperative and postoperative free-standing sagittal radiographs were obtained and analyzed by regional curves (lumbar, thoracic, and thoracolumbar), pelvic parameters (pelvic incidence and pelvic tilt [PT]) and global balance (sagittal vertical axis [SVA] and T-1 spinopelvic inclination). Correlations between PSO parameters (level and degree of change in angle between the 2 adjacent vertebrae) and spinopelvic measurements were analyzed.


Pedicle subtraction osteotomy distribution by level and degree of correction was as follows: L-1 (6 patients, 24°), L-2 (15 patients, 24°), L-3 (29 patients, 25°), and L-4 (20 patients, 22°). There was no significant difference in the focal correction achieved by PSO by level. All patients demonstrated changes in preoperative to postoperative parameters including increased lumbar lordosis (from 20° to 49°, p < 0.001), increased thoracic kyphosis (from 30° to 38°, p < 0.001), decreased SVA and T-1 spinopelvic inclination (from 122 to 34 mm, p < 0.001 and from +3° to −4°, p < 0.001, respectively), and decreased PT (from 31° to 23°, p < 0.001). More caudal PSO was correlated with greater PT reduction (r = −0.410, p < 0.05). No correlation was found between SVA correction and PSO location. The PSO degree was correlated with change in thoracic kyphosis (r = −0.474, p < 0.001), lumbar lordosis (r = 0.667, p < 0.001), sacral slope (r = 0.426, p < 0.001), and PT (r = −0.358, p < 0.005).


The degree of PSO resection correlates more with spinopelvic parameters (lumbar lordosis, thoracic kyphosis, PT, and sacral slope) than PSO level. More importantly, PSO level impacts postoperative PT correction but not SVA.

Restricted access

Andrew Reisner, Alexis D. Smith, David M. Wrubel, Bryan E. Buster, Michael S. Sawvel, Laura S. Blackwell, Nealen G. Laxpati, Barunashish Brahma, and Joshua J. Chern


The management of hydrocephalus resulting from intraventricular hemorrhage related to extreme prematurity remains demanding. Given the complexities of controlling hydrocephalus in this population, less commonly used procedures may be required. The authors examined the utility of ventriculogallbladder (VGB) shunts in a series of such children.


The authors retrospectively reviewed the medical records of all children who underwent surgery for hydrocephalus in the period from 2011 through 2019 at Children’s Healthcare of Atlanta. Six patients who underwent VGB shunt placement were identified among a larger cohort of 609 patients who had either a new shunt or a newly changed distal terminus site. The authors present an analysis of this series, including a case of laparoscopy-assisted distal VGB shunt revision.


The mean age at initial shunt placement was 5.1 months (range 3.0–9.4 months), with patients undergoing a mean of 11.8 shunt procedures (range 5–17) prior to the initial VGB shunt placement at a mean age of 5.3 years (range 7.9 months–12.8 years). All 6 patients with VGB shunt placement had hydrocephalus related to extreme prematurity (gestational age < 28 weeks). At the time of VGB shunt placement, all had complex medical and surgical histories, including poor venous access due to congenital or iatrogenic thrombosis or thrombophlebitis and a peritoneum hostile to distal shunt placement related to severe necrotizing enterocolitis. VGB complications included 1 case of shunt infection, identified at postoperative day 6, and 2 cases of distal shunt failure due to retraction of the distal end of the VGB shunt. In all, there were 3 conversions back to ventriculoperitoneal or ventriculoatrial shunts due to the 2 previously mentioned complications, plus 1 patient who outgrew their initial VGB shunt. Three of 6 patients remain with a VGB shunt, including 1 who underwent laparoscopy-assisted distal shunt revision 110.5 months after initial VGB shunt insertion.


Placement of VGB shunts should be considered in the armamentarium of procedures that may be used in the particularly difficult cohort of children with hydrocephalus related to extreme prematurity. VGB shunts show utility as both a definitive treatment and as a “bridge” procedure until the patient is larger and comorbid abdominal and/or vascular issues have resolved sufficiently to allow conversion back to ventriculoperitoneal or ventriculoatrial shunts, if needed.