Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Alexander K. Powers x
Clear All Modify Search
Restricted access

Ivan Stoev, Alexander K. Powers, Joan A. Puglisi, Rebecca Munro and Jeffrey R. Leonard

Object

The sacroiliac (SI) joint can be a pain generator in 13%–27% of cases of back pain in adults. These numbers are largely unknown for the pediatric population. In children and especially girls, development of the pelvic girdle makes the SI joint prone to misalignment. Young athletes sustain repeated stress on their SI joints, and sometimes even minor trauma can result in lasting pain that mimics radiculopathy. The authors present a series of 48 pediatric patients who were evaluated for low-back pain and were found to have SI joint misalignment as the cause of their symptoms. They were treated with a simple maneuver described in this paper that realigned their SI joint and provided significant improvement of symptoms.

Methods

A retrospective review of the electronic records identified 48 patients who were referred with primary complaints of low-back pain and were determined to have SI joint misalignment during bedside examination maneuvers described here. Three patients did not have a record of their response to treatment and were excluded. Patients were evaluated by a physical therapist and had the realignment procedure performed on the day of initial consultation. The authors collected data regarding the immediate effect of the procedure, as well as the duration of pain relief at follow-up visits.

Results

Eighty percent of patients experienced dramatic improvement in symptoms that had a lasting effect after the initial treatment. The majority of them were given a home exercise program, and only 2 of the 36 patients who experienced significant relief had to be treated again. Fifty-three percent of all patients had immediate and complete resolution of symptoms. Three of the 48 patients had missing data from the medical records and were excluded from computations.

Conclusions

Back pain is multifactorial, and the authors' data demonstrate the potential importance of SI joint pathology. Although the technique described here for treatment of misaligned SI joints in the pediatric patients is not effective in all, the authors have observed significant improvement in 80% of cases. Often it is difficult to determine the exact cause of back pain, but when the SI joint is suspected as the primary pathology, the authors have described a simple and effective bedside treatment that should be attempted prior to the initiation of further testing and surgery.

Restricted access

James L. West, Madison Arnel, Atilio E. Palma, John Frino, Alexander K. Powers and Daniel E. Couture

OBJECTIVE

Spine surgery is less common in children than adults. These surgeries, like all others, are subject to complications such as bleeding, infection, and CSF leak. The rate of incidental durotomy in the pediatric population, and its associated complications, has scarcely been reported in the literature.

METHODS

This is a retrospective chart review of all pediatric patients operated on at Wake Forest Baptist Health from 2012 to 2017 who underwent spine surgeries. The authors excluded any procedures with intended durotomy, such as tethered cord release or spinal cord tumor resection.

RESULTS

From 2012 to 2017, 318 pediatric patients underwent surgery for a variety of indications, including adolescent idiopathic scoliosis (51.9%), neuromuscular scoliosis (27.4%), thoracolumbar fracture (2.83%), and other non–fusion-related indications (3.77%). Of these patients, the average age was 14.1 years, and 71.0% were female. There were 6 total incidental durotomies, resulting in an overall incidence of 1.9%. The incidence was 18.5% in revision operations, compared to 0.34% for index surgeries. Comparison of the revision cohort to the durotomy cohort revealed a trend toward increased length of stay, operative time, and blood loss; however, the trends were not statistically significant. The pedicle probe was implicated in 3 cases and the exact cause was not ascertained in the remaining 3 cases. The 3 durotomies caused by pedicle probe were treated with bone wax; 1 was treated with dry Gelfoam application and 2 were treated with primary repair. Only 1 patient had a persistent leak postoperatively that eventually required wound revision.

CONCLUSIONS

Incidental durotomy is an uncommon occurrence in the pediatric spinal surgery population. The majority occurred during placement of pedicle screws, and they were easily treated with bone wax at the time of surgery. Awareness of the incidence, predisposing factors, and treatment options is important in preventing complications and disability.

Restricted access

Mark B. Frenkel, Casey D. Frey, Jaclyn J. Renfrow, Stacey Q. Wolfe, Alexander K. Powers and Charles L. Branch Jr.

Free access

Mireille E. Kelley, Joeline M. Kane, Mark A. Espeland, Logan E. Miller, Alexander K. Powers, Joel D. Stitzel and Jillian E. Urban

OBJECTIVE

This study evaluated the frequency, magnitude, and location of head impacts in practice drills within a youth football team to determine how head impact exposure varies among different types of drills.

METHODS

On-field head impact data were collected from athletes participating in a youth football team for a single season. Each athlete wore a helmet instrumented with a Head Impact Telemetry (HIT) System head acceleration measurement device during all preseason, regular season, and playoff practices. Video was recorded for all practices, and video analysis was performed to verify head impacts and assign each head impact to a specific drill. Eleven drills were identified: dummy/sled tackling, install, special teams, Oklahoma, one-on-one, open-field tackling, passing, position skill work, multiplayer tackle, scrimmage, and tackling drill stations. Generalized linear models were fitted to log-transformed data, and Wald tests were used to assess differences in head accelerations and impact rates.

RESULTS

A total of 2125 impacts were measured during 30 contact practices in 9 athletes (mean age 11.1 ± 0.6 years, mean mass 44.9 ± 4.1 kg). Open-field tackling had the highest median and 95th percentile linear accelerations (24.7g and 97.8g, respectively) and resulted in significantly higher mean head accelerations than several other drills. The multiplayer tackle drill resulted in the highest head impact frequency, with an average of 0.59 impacts per minute per athlete, but the lowest 95th percentile linear accelerations of all drills. The front of the head was the most common impact location for all drills except dummy/sled tackling.

CONCLUSIONS

Head impact exposure varies significantly in youth football practice drills, with several drills exposing athletes to high-magnitude and/or high-frequency head impacts. These data suggest that further study of practice drills is an important step in developing evidence-based recommendations for modifying or eliminating certain high-intensity drills to reduce head impact exposure and injury risk for all levels of play.

Restricted access

E. Andrew Stevens, Alexander K. Powers, Thomas A. Sweasey, Stephen B. Tatter and Robert G. Ojemann

The authors describe a method of harvesting autologous pericranium for duraplasty in patients with Chiari malformation Type I (CM-I) that avoids excessive exposure or a second incision. Nonautologous dural grafts have been associated with numerous complications including hemorrhage, bacteria and virus transmission, fatal Creutzfeldt-Jakob disease transmission, foreign body reaction, systemic immune response, excessive scarring, slower healing, premature graft dissolution, and wound dehiscence. Autogenous tissues have the advantage of being nonimmunogenic, nontoxic, readily available, and inexpensive. Pericranium is a preferred substrate because it is flexible, strong, and easily sutured for a watertight closure. Current literature supports the use of autogenous pericranium for dural grafting in CM-I procedures, but has heretofore failed to provide a method of harvest that avoids the complications associated with a larger exposure or second incision. The authors offer a simple alternative technique for using local pericranium in duraplasty for CM-I or other posterior fossa abnormalities.

Restricted access

Alexander K. Powers, Matthew T. Neal, Louis C. Argenta, John A. Wilson, Anthony J. DeFranzo and Stephen B. Tatter

The aim in this study was to describe the safety and efficacy of vacuum-assisted closure (VAC) in patients with complex cranial wounds with extensive scalp, bone, and dural defects who were not candidates for immediate free tissue transfer. Five patients (4 men and 1 woman) ages 24–73 years with complex cranial wounds were treated with VAC at Wake Forest Baptist Medical Center. Etiologies included trauma, squamous cell carcinoma, and malignant meningioma. Cutaneous wound defects measured as large as 15 cm in diameter. Four of the 5 patients had open skull defects with concomitant dural defects, and 1 patient had dural dehiscence. After surgical debridement, all 5 patients were treated with the direct application of a VAC device to a reapproximated dura mater (1 patient), to a pericranial flap (1 patient), or to a regenerative tissue matrix overlying CNS tissue (3 patients). In all cases involving open cranial wounds, the VAC device promoted granulation tissue formation over the dural substitute, prevented CSF leakage, and kept the wounds free from local infection. The duration of VAC therapy ranged from 16 to 91 days. Although VAC therapy was intended as a temporary measure until these patients could be stabilized for larger tissue transfer procedures or they succumbed to their primary pathology, 1 patient had a successful skin graft following VAC therapy. Hydrocephalus requiring shunt placement developed in 2 patients during VAC therapy. The VAC dressings applied to a tissue matrix or other barrier over brain tissue in extensive cranial wounds are safe and well tolerated, providing a functional barrier and preventing infection.

Restricted access

Chester K. Yarbrough, Alexander K. Powers, Tae Sung Park, Jeffrey R. Leonard, David D. Limbrick and Matthew D. Smyth

Object

A subset of patients with Chiari malformation Type I (CM-I) presented with acute onset of a neurological deficit. In this study the authors summarize their experience with these patients' clinical presentation, imaging results, timing of surgery, and outcome following decompression.

Methods

The authors reviewed clinical records, imaging studies, and operative notes from all patients undergoing posterior fossa decompression for CM-I at St. Louis Children's Hospital from 1990 to 2008. Of the 189 patients who underwent surgery, 6 were identified with the acute onset of a neurological deficit at presentation.

Results

All 6 children (age range 3–14 years, 3 boys and 3 girls) had either syringomyelia (5 patients) or T2 signal changes in the spinal cord (1 patient) and CM-I on initial MR imaging. Three patients presented after minor trauma (1 with paraparesis, 2 with sensory deficits). Three patients presented without a clear history of trauma (1 with abrupt onset of spontaneous dysphagia and ataxia, 2 with sensory deficits). Decompression was performed at a mean 7.7 ± 4.9 days after symptom onset (7.0 ± 1.6 days after neurosurgical evaluation). In 1 patient, symptoms had resolved by the time of surgery; in the remainder of the patients, clear improvements were noted within 2 weeks of surgery, with complete resolution of symptoms by 12 months postoperatively. Follow-up MR images were obtained in 4 patients, demonstrating improvement in the extent of the syrinx in each patient.

Conclusions

Children with CM-I and syringomyelia can develop acute spinal cord or bulbar deficits with relatively minor head or neck injuries. The prognosis for symptomatic improvement in the observed deficit is good, with each patient in our series showing resolution of deficits over time. However, based on this relatively limited experience, the authors suggest that patients who present with an acute neurological deficit and are found to have CM-I be managed with early posterior fossa decompression. Patients with CM-I and syringomyelia may be at higher risk of acute neurological deficit than those without a syrinx.

Restricted access

Mireille E. Kelley, Mark A. Espeland, William C. Flood, Alexander K. Powers, Christopher T. Whitlow, Joseph A. Maldjian, Joel D. Stitzel and Jillian E. Urban

OBJECTIVE

Limiting contact in football practice can reduce the number of head impacts a player receives, but further research is needed to inform the modification of optimal drills that mitigate head impact exposure (HIE) while the player develops the skills needed to safely play the game. This study aimed to compare HIE in practice drills among 6 youth football teams and to evaluate the effect of a team on HIE.

METHODS

On-field head impact data were collected from athletes (ages 10–13 years) playing on 6 local youth football teams (teams A–F) during all practices using the Head Impact Telemetry System. Video was recorded and analyzed to verify and assign impacts to a specific drill. Drills were identified as follows: dummy/sled tackling, half install, install, install walk through, multiplayer tackle, Oklahoma, one-on-one, open field tackling, other, passing, position skill work, scrimmage, special teams, tackling drill stations, and technique. HIE was quantified in terms of impacts per player per minute (ppm) and peak linear and rotational head acceleration. Generalized linear models were used to assess differences in head impact magnitude and frequency among drills as well as among teams within the most common drills.

RESULTS

Among 67 athlete-seasons, a total of 14,718 impacts during contact practices were collected and evaluated in this study. Among all 6 teams, the mean linear (p < 0.0001) and rotational (p < 0.0001) acceleration varied significantly among all drills. Open field tackling had significantly (p < 0.001) higher mean linear acceleration than all other drills. Multiplayer tackle had the highest mean impact rate (0.35 ppm). Significant variations in linear acceleration and impact rate were observed among teams within specific drills. Team A had the highest mean linear acceleration in install, one-on-one, and open field tackling and the highest mean impact rate in Oklahoma and position skill work. Although team A spent the greatest proportion of their practice on minimal- or no-player versus player contact drills (27%) compared to other teams, they had the highest median (20.2g) and 95th percentile (56.4g) linear acceleration in practice.

CONCLUSIONS

Full-speed tackling and blocking drills resulted in the highest HIE. Reducing time spent on contact drills relative to minimal or no contact drills may not lower overall HIE. Instead, interventions such as reducing the speed of players engaged in contact, correcting tackling technique, and progressing to contact may reduce HIE more effectively.

Restricted access

David D. Limbrick Jr., Prithvi Narayan, Alexander K. Powers, Jeffrey G. Ojemann, Tae Sung Park, Mary Bertrand and Matthew D. Smyth

Object

Hemispherotomy generally is performed in hemiparetic patients with severe, intractable epilepsy arising from one cerebral hemisphere. In this study, the authors evaluate the efficacy of hemispherotomy and present an analysis of the factors influencing seizure recurrence following the operation.

Methods

The authors performed a retrospective review of 49 patients (ages 0.2–20.5 years) who underwent functional hemispherotomy at their institution. The first 14 cases were traditional functional hemispherotomies, and included temporal lobectomy, while the latter 35 were performed using a modified periinsular technique that the authors adopted in 2003.

Results

Thirty-eight of the 49 patients (77.6%) were seizure free at the termination of the study (mean follow-up 28.6 months). Of the 11 patients who were not seizure free, all had significant improvement in seizure frequency, with 6 patients (12.2%) achieving Engel Class II outcome and 5 patients (10.2%) achieving Engel Class III. There were no cases of Engel Class IV outcome. The effect of hemispherotomy was durable over time with no significant change in Engel class over the postoperative follow-up period. There was no statistical difference in outcome between surgery types. Analysis of factors contributing to seizure recurrence after hemispherotomy revealed no statistically significant predictors of treatment failure, although bilateral electrographic abnormalities on the preoperative electroencephalogram demonstrated a trend toward a worse outcome.

Conclusions

In the present study, hemispherotomy resulted in freedom from seizures in nearly 78% of patients; worthwhile improvement was demonstrated in all patients. The seizure reduction observed after hemispherotomy was durable over time, with only rare late failure. Bilateral electrographic abnormalities may be predictive of posthemispherotomy recurrent seizures.

Restricted access

Jillian E. Urban, William C. Flood, Barret J. Zimmerman, Mireille E. Kelley, Mark A. Espeland, Liam McNamara, Elizabeth M. Davenport, Alexander K. Powers, Christopher T. Whitlow, Joseph A. Maldjian and Joel D. Stitzel

OBJECTIVE

There is a growing body of literature informing efforts to improve the safety of football; however, research relating on-field activity to head impacts in youth football is limited. Therefore, the objective of this study was to compare head impact exposure (HIE) measured in game plays among 3 youth football teams.

METHODS

Head impact and video data were collected from athletes (ages 10–13 years) participating on 3 youth football teams. Video analysis was performed to verify head impacts and assign each to a specific play type. Each play was categorized as a down, punt, kickoff, field goal, or false start. Kickoffs and punts were classified as special teams. Downs were classified as running, passing, or other. HIE was quantified by play type in terms of mean, median, and 95th percentile linear and rotational acceleration. Mixed-effects models were used to assess differences in acceleration among play types. Contact occurring on special teams plays was evaluated using a standardized video abstraction form.

RESULTS

A total of 3003 head impacts over 27.5 games were analyzed and paired with detailed video coding of plays. Most head impacts were attributed to running (79.6%), followed by passing (14.0%), and special teams (6.4%) plays. The 95th percentile linear acceleration measured during each play type was 52.6g, 50.7g, and 65.5g, respectively. Special teams had significantly greater mean linear acceleration than running and passing plays (both p = 0.03). The most common kick result on special teams was a deep kick, of which 85% were attempted to be returned. No special teams plays resulted in a touchback, and one resulted in a fair catch. One-third of all special teams plays and 92% of all nonreturned kicks resulted in athletes diving toward the ball.

CONCLUSIONS

The results demonstrate a trend toward higher head impact magnitudes on special teams than for running and passing plays, but a greater number of impacts were measured during running plays. Deep kicks were most common on special teams, and many returned and nonreturned kicks resulted in athletes diving toward the ball. These results support policy changes to youth special teams plays, including modifying the yard line the ball is kicked from and coaching proper return technique. Further investigation into biomechanical exposure measured during game impact scenarios is needed to inform policy relevant to the youth level.