Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Alexander I. Evins x
Clear All Modify Search
Free access

Malte Ottenhausen, Imithri Bodhinayake, Alexander I. Evins, Matei Banu, John A. Boockvar and Antonio Bernardo

In this article the authors discuss the development of neurosurgical approaches and the advances in science and technology that influenced this development throughout history. They provide a broad overview of this interesting topic from the first attempts of trephination by ancient cultures to the work of the pioneers of neurosurgery and the introduction of microsurgery.

Full access

Collin C. Tebo, Alexander I. Evins, Paul J. Christos, Jennifer Kwon and Theodore H. Schwartz

Object

Surgical interventions for medically refractory epilepsy are effective in selected patients, but they are underutilized. There remains a lack of pooled data on complication rates and their changes over a period of multiple decades. The authors performed a systematic review and meta-analysis of reported complications from intracranial epilepsy surgery from 1980 to 2012.

Methods

A literature search was performed to find articles published between 1980 and 2012 that contained at least 2 patients. Patients were divided into 3 groups depending on the procedure they underwent: A) temporal lobectomy with or without amygdalohippocampectomy, B) extratemporal lobar or multilobar resections, or C) invasive electrode placement. Articles were divided into 2 time periods, 1980–1995 and 1996–2012.

Results

Sixty-one articles with a total of 5623 patients met the study's eligibility criteria. Based on the 2 time periods, neurological deficits decreased dramatically from 41.8% to 5.2% in Group A and from 30.2% to 19.5% in Group B. Persistent neurological deficits in these 2 groups decreased from 9.7% to 0.8% and from 9.0% to 3.2%, respectively. Wound infections/meningitis decreased from 2.5% to 1.1% in Group A and from 5.3% to 1.9% in Group B. Persistent neurological deficits were uncommon in Group C, although wound infections/meningitis and hemorrhage/hematoma increased over time from 2.3% to 4.3% and from 1.9% to 4.2%, respectively. These complication rates are additive in patients undergoing implantation followed by resection.

Conclusions

Complication rates have decreased dramatically over the last 30 years, particularly for temporal lobectomy, but they remain an unavoidable consequence of epilepsy surgery. Permanent neurological deficits are rare following epilepsy surgery compared with the long-term risks of intractable epilepsy.

Full access

Francesco Cardinale and Massimo Cossu

Restricted access

Alireza Shoakazemi, Alexander I. Evins, Justin C. Burrell, Philip E. Stieg and Antonio Bernardo

OBJECT

Surgical approaches to deep-seated brain pathologies, specifically lesions of the third ventricle, have always been a challenge for neurosurgeons. In certain cases, the transcallosal approach remains the most suitable option for targeting lesions of the third ventricle, although retraction of the fornices and wall of the third ventricle have been associated with neuropsychological and hypothalamic deficits. The authors investigated the feasibility of an interhemispheric 3D endoscopic transcallosal approach through a minimally invasive tubular retractor system for the management of third ventricular lesions.

METHODS

Three-dimensional endoscopic transtubular transcallosal approaches were performed on 5 preserved cadaveric heads (10 sides). A parasagittal bur hole was placed using neuronavigation, and a tubular retractor was inserted under direct endoscopic visualization. Following observation of the vascular structures, fenestration of the corpus callosum was performed and the retractor was advanced through the opening. Transforaminal, interforniceal, and transchoroidal modifications were all performed and evaluated by 3 surgeons.

RESULTS

This approach provided enhanced visualization of the third ventricle and more stable retraction of corpus callosum and fornices. Bayonetted instruments were used through the retractor without difficulty, and the retractor applied rigid, constant, and equally distributed pressure on the corpus callosum.

CONCLUSIONS

A transtubular approach to the third ventricle is feasible and facilitates blunt dissection of the corpus callosum that may minimize retraction injury. This technique also provides an added degree of safety by limiting the free range of instrumental movement. The combination of 3D endoscopic visualization with a clear plastic retractor facilitates safe and direct monitoring of the surgical corridor.

Restricted access

Michael A. Cohen, Alexander I. Evins, Gennaro Lapadula, Leopold Arko, Philip E. Stieg and Antonio Bernardo

OBJECTIVE

The rectus capitis lateralis (RCL) is a small posterior cervical muscle that originates from the transverse process of C-1 and inserts onto the jugular process of the occipital bone. The authors describe the RCL and its anatomical relationships, and discuss its utility as a surgical landmark for safe exposure of the jugular foramen in extended or combined skull base approaches. In addition, the condylar triangle is defined as a landmark for localizing the vertebral artery (VA) and occipital condyle.

METHODS

Four cadaveric heads (8 sides) were used to perform far-lateral, extended far-lateral, combined transmastoid infralabyrinthine transcervical, and combined far-lateral transmastoid infralabyrinthine transcervical approaches to the jugular foramen. On each side, the RCL was dissected, and its musculoskeletal, vascular, and neural relationships were examined.

RESULTS

The RCL lies directly posterior to the internal jugular vein—only separated by the carotid sheath and in some cases cranial nerve (CN) XI. The occipital artery travels between the RCL and the posterior belly of the digastric muscle, and the VA passes medially to the RCL as it exits the C-1 foramen transversarium and courses posteriorly toward its dural entrance. CNs IX–XI exit the jugular foramen directly anterior to the RCL. To provide a landmark for identification of the occipital condyle and the extradural VA without exposure of the suboccipital triangle, the authors propose and define a condylar triangle that is formed by the RCL anteriorly, the superior oblique posteriorly, and the occipital bone superiorly.

CONCLUSIONS

The RCL is an important surgical landmark that allows for early identification of the critical neurovascular structures when approaching the jugular foramen, especially in the presence of anatomically displacing tumors. The condylar triangle is a novel and useful landmark for identifying the terminal segment of the hypoglossal canal as well as the superior aspect of the VA at its exit from the C-1 foramen transversarium, without performing a far-lateral exposure.

Full access

Hitoshi Fukuda, Alexander I. Evins, Koichi Iwasaki, Itaro Hattori, Kenichi Murao, Yoshitaka Kurosaki, Masaki Chin, Philip E. Stieg, Sen Yamagata and Antonio Bernardo

OBJECTIVE

Occipital artery–posterior inferior cerebellar artery (OA-PICA) bypass is a technically challenging procedure for posterior fossa revascularization. The caudal loop of the PICA is considered the optimal site for OA-PICA anastomosis, however its absence can increase the technical difficulty associated with this procedure. The use of the far-lateral approach for accessing alternative anastomosis sites in OA-PICA bypass in patients with absent or unavailable caudal loops of PICA is evaluated.

METHODS

A morphometric analysis of OA-PICA bypass with anastomosis on each segment of the PICA was performed on 5 cadaveric specimens through the conventional midline foramen magnum and far-lateral approaches. The difficulty level associated with anastomoses at each segment was qualitatively assessed in each approach for exposure and maneuverability by multiple surgeons. A series of 8 patients who underwent OA-PICA bypass for hemodynamic ischemia or ruptured dissecting posterior fossa aneurysms are additionally reviewed and described, and the clinical significance of the caudal loop of PICA is discussed.

RESULTS

Anastomosis on the caudal loop could be performed more superficially than on any other segment (p < 0.001). A far-lateral approach up to the medial border of the posterior condylar canal provided a 13.5 ± 2.2–mm wider corridor than the conventional midline foramen magnum approach, facilitating access to alternative anastomosis sites. The far-lateral approach was successfully used for OA-PICA bypass in 3 clinical cases whose caudal loops were absent, whereas the midline foramen magnum approach provided sufficient exposure for caudal loop bypass in the remaining 5 cases.

CONCLUSIONS

The absence of the caudal loop of the PICA is a major contributing factor to the technical difficulty of OA-PICA bypass. The far-lateral approach is a useful surgical option for OA-PICA bypass when the caudal loop of the PICA is unavailable.

Restricted access

Sukhdeep S. Jhawar, Maximiliano Nunez, Paolo Pacca, Daniel Seclen Voscoboinik and Huy Q. Truong

Restricted access

Du Cheng, Melissa Yuan, Imali Perera, Ashley O’Connor, Alexander I. Evins, Thomas Imahiyerobo, Mark Souweidane and Caitlin Hoffman

OBJECTIVE

Craniosynostosis correction, including cranial vault remodeling, fronto-orbital advancement (FOA), and endoscopic suturectomy, requires practical experience with complex anatomy and tools. The infrequent exposure to complex neurosurgical procedures such as these during residency limits extraoperative training. Lack of cadaveric teaching tools given the pediatric nature of synostosis compounds this challenge. The authors sought to create lifelike 3D printed models based on actual cases of craniosynostosis in infants and incorporate them into a practical course for endoscopic and open correction. The authors hypothesized that this training tool would increase extraoperative facility and familiarity with cranial vault reconstruction to better prepare surgeons for in vivo procedures.

METHODS

The authors utilized representative craniosynostosis patient scans to create 3D printed models of the calvaria, soft tissues, and cranial contents. Two annual courses implementing these models were held, and surveys were completed by participants (n = 18, 5 attending physicians, 4 fellows, 9 residents) on the day of the course. These participants were surveyed during the course and 1 year later to assess the impact of this training tool. A comparable cohort of trainees who did not participate in the course (n = 11) was also surveyed at the time of the 1-year follow-up to assess their preparation and confidence with performing craniosynostosis surgeries.

RESULTS

An iterative process using multiple materials and the various printing parameters was used to create representative models. Participants performed all major surgical steps, and we quantified the fidelity and utility of the model through surveys. All attendees reported that the model was a valuable training tool for open reconstruction (n = 18/18 [100%]) and endoscopic suturectomy (n = 17/18 [94%]). In the first year, 83% of course participants (n = 14/17) agreed or strongly agreed that the skin and bone materials were realistic and appropriately detailed; the second year, 100% (n = 16/16) agreed or strongly agreed that the skin material was realistic and appropriately detailed, and 88% (n = 14/16) agreed or strongly agreed that the bone material was realistic and appropriately detailed. All participants responded that they would use the models for their own personal training and the training of residents and fellows in their programs.

CONCLUSIONS

The authors have developed realistic 3D printed models of craniosynostosis including soft tissues that allow for surgical practice simulation. The use of these models in surgical simulation provides a level of preparedness that exceeds what currently exists through traditional resident training experience. Employing practical modules using such models as part of a standardized resident curriculum is a logical evolution in neurosurgical education and training.

Restricted access

Du Cheng, Melissa Yuan, Imali Perera, Ashley O’Connor, Alexander I. Evins, Thomas Imahiyerobo, Mark Souweidane and Caitlin Hoffman

OBJECTIVE

Craniosynostosis correction, including cranial vault remodeling, fronto-orbital advancement (FOA), and endoscopic suturectomy, requires practical experience with complex anatomy and tools. The infrequent exposure to complex neurosurgical procedures such as these during residency limits extraoperative training. Lack of cadaveric teaching tools given the pediatric nature of synostosis compounds this challenge. The authors sought to create lifelike 3D printed models based on actual cases of craniosynostosis in infants and incorporate them into a practical course for endoscopic and open correction. The authors hypothesized that this training tool would increase extraoperative facility and familiarity with cranial vault reconstruction to better prepare surgeons for in vivo procedures.

METHODS

The authors utilized representative craniosynostosis patient scans to create 3D printed models of the calvaria, soft tissues, and cranial contents. Two annual courses implementing these models were held, and surveys were completed by participants (n = 18, 5 attending physicians, 4 fellows, 9 residents) on the day of the course. These participants were surveyed during the course and 1 year later to assess the impact of this training tool. A comparable cohort of trainees who did not participate in the course (n = 11) was also surveyed at the time of the 1-year follow-up to assess their preparation and confidence with performing craniosynostosis surgeries.

RESULTS

An iterative process using multiple materials and the various printing parameters was used to create representative models. Participants performed all major surgical steps, and we quantified the fidelity and utility of the model through surveys. All attendees reported that the model was a valuable training tool for open reconstruction (n = 18/18 [100%]) and endoscopic suturectomy (n = 17/18 [94%]). In the first year, 83% of course participants (n = 14/17) agreed or strongly agreed that the skin and bone materials were realistic and appropriately detailed; the second year, 100% (n = 16/16) agreed or strongly agreed that the skin material was realistic and appropriately detailed, and 88% (n = 14/16) agreed or strongly agreed that the bone material was realistic and appropriately detailed. All participants responded that they would use the models for their own personal training and the training of residents and fellows in their programs.

CONCLUSIONS

The authors have developed realistic 3D printed models of craniosynostosis including soft tissues that allow for surgical practice simulation. The use of these models in surgical simulation provides a level of preparedness that exceeds what currently exists through traditional resident training experience. Employing practical modules using such models as part of a standardized resident curriculum is a logical evolution in neurosurgical education and training.