Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Alexander C. Whiting x
Clear All Modify Search
Free access

Alexander C. Whiting, Michael Y. Oh and Donald M. Whiting

The mechanisms of appetite disorders, such as refractory obesity and anorexia nervosa, have been vigorously studied over the last century, and these studies have shown that the central nervous system has significant involvement with, and responsibility for, the pathology associated with these diseases. Because deep brain stimulation has been shown to be a safe, efficacious, and adjustable treatment modality for a variety of other neurological disorders, it has also been studied as a possible treatment for appetite disorders. In studies of refractory obesity in animal models, the ventromedial hypothalamus, the lateral hypothalamus, and the nucleus accumbens have all demonstrated elements of success as deep brain stimulation targets. Multiple targets for deep brain stimulation have been proposed for anorexia nervosa, with research predominantly focusing on the subcallosal cingulate, the nucleus accumbens, and the stria terminalis and medial forebrain bundle. Human deep brain stimulation studies that focus specifically on refractory obesity and anorexia nervosa have been performed but with limited numbers of patients. In these studies, the target for refractory obesity has been the lateral hypothalamus, ventromedial hypothalamus, and nucleus accumbens, and the target for anorexia nervosa has been the subcallosal cingulate. These studies have shown promising findings, but further research is needed to elucidate the long-term efficacy of deep brain stimulation for the treatment of appetite disorders.

Restricted access

Alexander C. Whiting, Tsinsue Chen, Kyle I. Swanson, Corey T. Walker, Jakub Godzik, Joshua S. Catapano and Kris A. Smith

OBJECTIVE

Debate continues over proper surgical treatment for mesial temporal lobe epilepsy (MTLE). Few large comprehensive studies exist that have examined outcomes for the subtemporal selective amygdalohippocampectomy (sSAH) approach. This study describes a minimally invasive technique for sSAH and examines seizure and neuropsychological outcomes in a large series of patients who underwent sSAH for MTLE.

METHODS

Data for 152 patients (94 women, 61.8%; 58 men, 38.2%) who underwent sSAH performed by a single surgeon were retrospectively reviewed. The sSAH technique involves a small, minimally invasive opening and preserves the anterolateral temporal lobe and the temporal stem.

RESULTS

All patients in the study had at least 1 year of follow-up (mean [SD] 4.52 [2.57] years), of whom 57.9% (88/152) had Engel class I seizure outcomes. Of the patients with at least 2 years of follow-up (mean [SD] 5.2 [2.36] years), 56.5% (70/124) had Engel class I seizure outcomes. Preoperative and postoperative neuropsychological test results indicated no significant change in intelligence, verbal comprehension, perceptual reasoning, attention and processing, cognitive flexibility, visuospatial memory, or mood. There was a significant change in word retrieval regardless of the side of surgery and a significant change in verbal memory in patients who underwent dominant-side resection (p < 0.05). Complication rates were low, with a 1.3% (2/152) permanent morbidity rate and 0.0% mortality rate.

CONCLUSIONS

This study reports a large series of patients who have undergone sSAH, with a comprehensive presentation of a minimally invasive technique. The sSAH approach described in this study appears to be a safe, effective, minimally invasive technique for the treatment of MTLE.

Restricted access

Jakub Godzik, Jennifer N. Lehrman, Anna G. U. S. Newcomb, Ram Kumar Menon, Alexander C. Whiting, Brian P. Kelly and Laura A. Snyder

OBJECTIVE

Transforaminal lumbar interbody fusion (TLIF) is commonly used for lumbar fusion, such as for foraminal decompression, stabilization, and improving segmental lordosis. Although many options exist, surgical success is contingent on matching design strengths with surgical goals. The goal in the present study was to investigate the effects of an expandable interbody spacer and 2 traditional static spacer designs in terms of stability, compressive stiffness, foraminal height, and segmental lordosis.

METHODS

Standard nondestructive flexibility tests (7.5 N⋅m) were performed on 8 cadaveric lumbar specimens (L3–S1) to assess intervertebral stability of 3 types of TLIF spacers at L4–5 with bilateral posterior screw-rod (PSR) fixation. Stability was determined as range of motion (ROM) in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Compressive stiffness was determined with axial compressive loading (300 N). Foraminal height, disc height, and segmental lordosis were evaluated using radiographic analysis after controlled PSR compression (170 N). Four conditions were tested in random order: 1) intact, 2) expandable interbody cage with PSR fixation (EC+PSR), 3) static ovoid cage with PSR fixation (SOC+PSR), and 4) static rectangular cage with PSR fixation (SRC+PSR).

RESULTS

All constructs demonstrated greater stability than the intact condition (p < 0.001). No significant differences existed among constructs in ROM (FE, AR, and LB) or compressive stiffness (p ≥ 0.66). The EC+PSR demonstrated significantly greater foraminal height at L4–5 than SRC+PSR (21.1 ± 2.6 mm vs 18.6 ± 1.7 mm, p = 0.009). EC+PSR demonstrated higher anterior disc height than SOC+PSR (14.9 ± 1.9 mm vs 13.6 ± 2.2 mm, p = 0.04) and higher posterior disc height than the intact condition (9.4 ± 1.5 mm vs 7.1 ± 1.0 mm, p = 0.002), SOC+PSR (6.5 ± 1.8 mm, p < 0.001), and SRC+PSR (7.2 ± 1.2 mm, p < 0.001). There were no significant differences in segmental lordosis among SOC+PSR (10.1° ± 2.2°), EC+PSR (8.1° ± 0.5°), and SRC+PSR (11.1° ± 3.0°) (p ≥ 0.06).

CONCLUSIONS

An expandable interbody spacer provided stability, stiffness, and segmental lordosis comparable to those of traditional nonexpandable spacers of different shapes, with increased foraminal height and greater disc height. These results may help inform decisions about which interbody implants will best achieve surgical goals.

Restricted access

Corey T. Walker, S. Harrison Farber, Tyler S. Cole, David S. Xu, Jakub Godzik, Alexander C. Whiting, Cory Hartman, Randall W. Porter, Jay D. Turner and Juan Uribe

OBJECTIVE

Minimally invasive anterolateral retroperitoneal approaches for lumbar interbody arthrodesis have distinct advantages attractive to spine surgeons. Prepsoas or transpsoas trajectories can be employed with differing complication profiles because of the inherent anatomical differences encountered in each approach. The evidence comparing them remains limited because of poor quality data. Here, the authors sought to systematically review the available literature and perform a meta-analysis comparing the two techniques.

METHODS

A systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A database search was used to identify eligible studies. Prepsoas and transpsoas studies were compiled, and each study was assessed for inclusion criteria. Complication rates were recorded and compared between approach groups. Studies incorporating an analysis of postoperative subsidence and pseudarthrosis rates were also assessed and compared.

RESULTS

For the prepsoas studies, 20 studies for the complications analysis and 8 studies for the pseudarthrosis outcomes analysis were included. For the transpsoas studies, 39 studies for the complications analysis and 19 studies for the pseudarthrosis outcomes analysis were included. For the complications analysis, 1874 patients treated via the prepsoas approach and 4607 treated with the transpsoas approach were included. In the transpsoas group, there was a higher rate of transient sensory symptoms (21.7% vs 8.7%, p = 0.002), transient hip flexor weakness (19.7% vs 5.7%, p < 0.001), and permanent neurological weakness (2.8% vs 1.0%, p = 0.005). A higher rate of sympathetic nerve injury was seen in the prepsoas group (5.4% vs 0.0%, p = 0.03). Of the nonneurological complications, major vascular injury was significantly higher in the prepsoas approach (1.8% vs 0.4%, p = 0.01). There was no difference in urological or peritoneal/bowel injury, postoperative ileus, or hematomas (all p > 0.05). A higher infection rate was noted for the transpsoas group (3.1% vs 1.1%, p = 0.01). With regard to postoperative fusion outcomes, similar rates of subsidence (12.2% prepsoas vs 13.8% transpsoas, p = 0.78) and pseudarthrosis (9.9% vs 7.5%, respectively, p = 0.57) were seen between the groups at the last follow-up.

CONCLUSIONS

Complication rates vary for the prepsoas and transpsoas approaches owing to the variable retroperitoneal anatomy encountered during surgical dissection. While the risks of a lasting motor deficit and transient sensory disturbances are higher for the transpsoas approach, there is a reciprocal reduction in the risks of major vascular injury and sympathetic nerve injury. These results can facilitate informed decision-making and tailored surgical planning regarding the choice of minimally invasive anterolateral access to the spine.

Restricted access

Joshua S. Catapano, Andrew F. Ducruet, Fabio A. Frisoli, Candice L. Nguyen, Christopher E. Louie, Mohamed A. Labib, Jacob F. Baranoski, Tyler S. Cole, Alexander C. Whiting, Felipe C. Albuquerque and Michael T. Lawton

OBJECTIVE

Takotsubo cardiomyopathy (TC) in patients with aneurysmal subarachnoid hemorrhage (aSAH) is associated with high morbidity and mortality. Previous studies have shown that female patients presenting with a poor clinical grade are at the greatest risk for developing TC. Intra-aortic balloon pumps (IABPs) are known to support cardiac function in severe cases of TC, and they may aid in the treatment of vasospasm in these patients. In this study, the authors investigated risk factors for developing TC in the setting of aSAH and outcomes among patients requiring IABPs.

METHODS

The authors retrospectively reviewed the records of 1096 patients who had presented to their institution with aSAH. Four hundred five of these patients were originally enrolled in the Barrow Ruptured Aneurysm Trial, and an additional 691 patients from a subsequent prospectively maintained aSAH database were analyzed. Medical records were reviewed for the presence of TC according to the modified Mayo Clinic criteria. Outcomes were determined at the last follow-up, with a poor outcome defined as a modified Rankin Scale (mRS) score > 2.

RESULTS

TC was identified in 26 patients with aSAH. Stepwise multivariate logistic regression analysis identified female sex (OR 8.2, p = 0.005), Hunt and Hess grade > III (OR 7.6, p < 0.001), aneurysm size > 7 mm (OR 3, p = 0.011), and clinical vasospasm (OR 2.9, p = 0.037) as risk factors for developing TC in the setting of aSAH. TC patients, even with IABP placement, had higher rates of poor outcomes (77% vs 47% with an mRS score > 2, p = 0.004) and mortality at the last follow-up (27% vs 11%, p = 0.018) than the non-TC patients. However, aggressive intra-arterial endovascular treatment for vasospasm was associated with good outcomes in the TC patients versus nonaggressive treatment (100% with mRS ≤ 2 at last follow-up vs 53% with mRS > 2, p = 0.040).

CONCLUSIONS

TC after aSAH tends to occur in female patients with large aneurysms, poor clinical grades, and clinical vasospasm. These patients have significantly higher rates of poor neurological outcomes, even with the placement of an IABP. However, aggressive intra-arterial endovascular therapy in select patients with vasospasm may improve outcome.

Free access

Jakub Godzik, Ifije E. Ohiorhenuan, David S. Xu, Bernardo de Andrada Pereira, Corey T. Walker, Alexander C. Whiting, Jay D. Turner and Juan S. Uribe

OBJECTIVE

Lateral lumbar interbody fusion (LLIF) is a useful minimally invasive technique for achieving anterior interbody fusion and preserving or restoring lumbar lordosis. However, achieving circumferential fusion via posterior instrumentation after an LLIF can be challenging, requiring either repositioning the patient or placing pedicle screws in the lateral position. Here, the authors explore an alternative single-position approach: LLIF in the prone lateral (PL) position.

METHODS

A cadaveric feasibility study was performed using 2 human cadaveric specimens. A retrospective 2-center early clinical series was performed for patients who had undergone a minimally invasive lateral procedure in the prone position between August 2019 and March 2020. Case duration, retractor time, electrophysiological thresholds, implant size, screw accuracy, and complications were recorded. Early postoperative radiographic outcomes were reported.

RESULTS

A PL LLIF was successfully performed in 2 cadavers without causing injury to a vessel or the bowel. No intraoperative subsidence was observed. In the clinical series, 12 patients underwent attempted PL surgery, although 1 case was converted to standard lateral positioning. Thus, 11 patients successfully underwent PL LLIF (89%) across 14 levels: L2–3 (2 of 14 [14%]), L3–4 (6 of 14 [43%]), and L4–5 (6 of 14 [43%]). For the 11 PL patients, the mean (± SD) age was 61 ± 16 years, mean BMI was 25.8 ± 4.8, and mean retractor time per level was 15 ± 6 minutes with the longest retractor time at L2–3 and the shortest at L4–5. No intraoperative subsidence was noted on routine postoperative imaging.

CONCLUSIONS

Performing single-position lateral transpsoas interbody fusion with the patient prone is anatomically feasible, and in an early clinical experience, it appeared safe and reproducible. Prone positioning for a lateral approach presents an exciting opportunity for streamlining surgical access to the lumbar spine and facilitating more efficient surgical solutions with potential clinical and economic advantages.