Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Alex M. Zhu x
  • All content x
Clear All Modify Search
Free access

Corinna C. Zygourakis, A. Karim Ahmed, Samuel Kalb, Alex M. Zhu, Ali Bydon, Neil R. Crawford, and Nicholas Theodore

The Excelsius GPS (Globus Medical, Inc.) was approved by the FDA in 2017. This novel robot allows for real-time intraoperative imaging, registration, and direct screw insertion through a rigid external arm—without the need for interspinous clamps or K-wires. The authors present one of the first operative cases utilizing the Excelsius GPS robotic system in spinal surgery. A 75-year-old man presented with severe lower back pain and left leg radiculopathy. He had previously undergone 3 decompressive surgeries from L3 to L5, with evidence of instability and loss of sagittal balance. Robotic assistance was utilized to perform a revision decompression with instrumented fusion from L3 to S1. The usage of robotic assistance in spinal surgery may be an invaluable resource in minimally invasive cases, minimizing the need for fluoroscopy, or in those with abnormal anatomical landmarks.

The video can be found here:

Restricted access

Robert Young, Ethan Cottrill, Zach Pennington, Jeff Ehresman, A. Karim Ahmed, Timothy Kim, Bowen Jiang, Daniel Lubelski, Alex M. Zhu, Katherine S. Wright, Donna Gavin, Alyson Russo, Marie N. Hanna, Ali Bydon, Timothy F. Witham, Corinna Zygourakis, and Nicholas Theodore


Enhanced Recovery After Surgery (ERAS) protocols have rapidly gained popularity in multiple surgical specialties and are recognized for their potential to improve patient outcomes and decrease hospitalization costs. However, they have only recently been applied to spinal surgery. The goal in the present work was to describe the development, implementation, and impact of an Enhanced Recovery After Spine Surgery (ERASS) protocol for patients undergoing elective spine procedures at an academic community hospital.


A multidisciplinary team, drawing on prior publications and spine surgery best practices, collaborated to develop an ERASS protocol. Patients undergoing elective cervical or lumbar procedures were prospectively enrolled at a single tertiary care center; interventions were standardized across the cohort for pre-, intra-, and postoperative care using standardized order sets in the electronic medical record. Protocol efficacy was evaluated by comparing enrolled patients to a historic cohort of age- and procedure-matched controls. The primary study outcomes were quantity of opiate use in morphine milligram equivalents (MMEs) on postoperative day (POD) 1 and length of stay. Secondary outcomes included frequency and duration of indwelling urinary catheter use, discharge disposition, 30-day readmission and reoperation rates, and complication rates. Multivariable linear regression was used to determine whether ERASS protocol use was independently predictive of opiate use on POD 1.


In total, 97 patients were included in the study cohort and were compared with a historic cohort of 146 patients. The patients in the ERASS group had lower POD 1 opiate use than the control group (26 ± 33 vs 42 ± 40 MMEs, p < 0.001), driven largely by differences in opiate-naive patients (16 ± 21 vs 38 ± 36 MMEs, p < 0.001). Additionally, patients in the ERASS group had shorter hospitalizations than patients in the control group (51 ± 30 vs 62 ± 49 hours, p = 0.047). On multivariable regression, implementation of the ERASS protocol was independently predictive of lower POD 1 opiate consumption (β = −7.32, p < 0.001). There were no significant differences in any of the secondary outcomes.


The authors found that the development and implementation of a comprehensive ERASS protocol led to a modest reduction in postoperative opiate consumption and hospital length of stay in patients undergoing elective cervical or lumbar procedures. As suggested by these results and those of other groups, the implementation of ERASS protocols may reduce care costs and improve patient outcomes after spine surgery.