Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Alessandro Borghi x
  • Refine by Access: all x
Clear All Modify Search
Full access

Christopher R. Forrest

Restricted access

Ahmed Elawadly, Luke Smith, Alessandro Borghi, Khaled I. Abdelaziz, Adikarige Haritha Dulanka Silva, David J. Dunaway, Noor ul Owase Jeelani, Juling Ong, and Greg James

OBJECTIVE

Endoscopic strip craniectomy with postoperative helmet orthosis therapy (ESCH) has emerged as a less invasive alternative to fronto-orbital remodeling for correction of trigonocephaly. However, there is no standardized objective method for monitoring morphological changes following ESCH. Such a method should be reproducible and avoid the use of ionizing radiation and general anesthesia for diagnostic imaging. The authors analyzed a number of metrics measured using 3D stereophotogrammetry (3DSPG) following ESCH, an imaging alternative that is free of ionizing radiation and can be performed on awake children.

METHODS

3DSPG images obtained at two time points (perisurgical and 1-year follow-up [FU]) of children with metopic synostosis who had undergone ESCH were analyzed and compared to 3DSPG images of age-matched control children without craniofacial anomalies. In total, 9 parameters were measured, the frontal angle and anteroposterior volume in addition to 7 novel parameters: anteroposterior area ratio, anteroposterior width ratios 1 and 2, and right and left anteroposterior diagonal ratios 30 and 60.

RESULTS

Six eligible patients were identified in the operated group, and 15 children were in the control group. All 9 parameters differed significantly between perisurgical and age-matched controls, as well as from perisurgical to FU scans. Comparison of FU scans of metopic synostosis patients who underwent surgery to scans of age-matched controls without metopic synostosis revealed that all parameters were statistically identical, with the exception of the right anteroposterior diagonal ratio 30, which was not fully corrected in the treated patients. The left anterior part of the head showed the most change in surface area maps.

CONCLUSIONS

In this pilot study, ESCH showed satisfactory results at 1 year, with improvements in all measured parameters compared to perisurgical results and normalization of 8 of 9 parameters compared to an age-matched control group. The results indicate that these parameters may be useful for craniofacial units for monitoring changes in head shape after ESCH for trigonocephaly and that 3DSPG, which avoids the use of anesthesia and ionizing radiation, is a satisfactory monitoring method.

Full access

Alessandro Borghi, Silvia Schievano, Naiara Rodriguez Florez, Roisin McNicholas, Will Rodgers, Allan Ponniah, Greg James, Richard Hayward, David Dunaway, and N. u. Owase Jeelani

OBJECTIVE

Scaphocephaly secondary to sagittal craniosynostosis has been treated in recent years with spring-assisted cranioplasty, an innovative approach that leverages the use of metallic spring distractors to reshape the patient skull. In this study, a population of patients who had undergone spring cranioplasty for the correction of scaphocephaly at the Great Ormond Street Hospital for Children was retrospectively analyzed to systematically assess spring biomechanical performance and kinematics in relation to spring model, patient age, and outcomes over time.

METHODS

Data from 60 patients (49 males, mean age at surgery 5.2 ± 0.9 months) who had received 2 springs for the treatment of isolated sagittal craniosynostosis were analyzed. The opening distance of the springs at the time of insertion and removal was retrieved from the surgical notes and, during the implantation period, from planar radiographs obtained at 1 day postoperatively and at the 3-week follow-up. The force exerted by the spring to the patient skull at each time point was derived after mechanical testing of each spring model—3 devices with the same geometry but different wire thicknesses. Changes in the cephalic index between preoperatively and the 3-week follow-up were recorded.

RESULTS

Stiffer springs were implanted in older patients (p < 0.05) to achieve the same opening on-table as in younger patients, but this entailed significantly different—higher—forces exerted on the skull when combinations of stiffer springs were used (p < 0.001). After initial force differences between spring models, however, the devices all plateaued. Indeed, regardless of patient age or spring model, after 10 days from insertion, all the devices were open.

CONCLUSIONS

Results in this study provide biomechanical insights into spring-assisted cranioplasty and could help to improve spring design and follow-up strategy in the future.