Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Akiyoshi Ogino x
  • All content x
Clear All Modify Search
Restricted access

Monica Mureb, Danielle Golub, Carolina Benjamin, Jason Gurewitz, Ben A. Strickland, Gabriel Zada, Eric Chang, Dušan Urgošík, Roman Liščák, Ronald E. Warnick, Herwin Speckter, Skyler Eastman, Anthony M. Kaufmann, Samir Patel, Caleb E. Feliciano, Carlos H. Carbini, David Mathieu, William Leduc, DCS, Sean J. Nagel, Yusuke S. Hori, Yi-Chieh Hung, Akiyoshi Ogino, Andrew Faramand, Hideyuki Kano, L. Dade Lunsford, Jason Sheehan, and Douglas Kondziolka

OBJECTIVE

Trigeminal neuralgia (TN) is a chronic pain condition that is difficult to control with conservative management. Furthermore, disabling medication-related side effects are common. This study examined how stereotactic radiosurgery (SRS) affects pain outcomes and medication dependence based on the latency period between diagnosis and radiosurgery.

METHODS

The authors conducted a retrospective analysis of patients with type I TN at 12 Gamma Knife treatment centers. SRS was the primary surgical intervention in all patients. Patient demographics, disease characteristics, treatment plans, medication histories, and outcomes were reviewed.

RESULTS

Overall, 404 patients were included. The mean patient age at SRS was 70 years, and 60% of the population was female. The most common indication for SRS was pain refractory to medications (81%). The median maximum radiation dose was 80 Gy (range 50–95 Gy), and the mean follow-up duration was 32 months. The mean number of medications between baseline (pre-SRS) and the last follow-up decreased from 1.98 to 0.90 (p < 0.0001), respectively, and this significant reduction was observed across all medication categories. Patients who received SRS within 4 years of their initial diagnosis achieved significantly faster pain relief than those who underwent treatment after 4 years (median 21 vs 30 days, p = 0.041). The 90-day pain relief rate for those who received SRS ≤ 4 years after their diagnosis was 83.8% compared with 73.7% in patients who received SRS > 4 years after their diagnosis. The maximum radiation dose was the strongest predictor of a durable pain response (OR 1.091, p = 0.003). Early intervention (OR 1.785, p = 0.007) and higher maximum radiation dose (OR 1.150, p < 0.0001) were also significant predictors of being pain free (a Barrow Neurological Institute pain intensity score of I–IIIA) at the last follow-up visit. New sensory symptoms of any kind were seen in 98 patients (24.3%) after SRS. Higher maximum radiation dose trended toward predicting new sensory deficits but was nonsignificant (p = 0.075).

CONCLUSIONS

TN patients managed with SRS within 4 years of diagnosis experienced a shorter interval to pain relief with low risk. SRS also yielded significant decreases in adjunct medication utilization. Radiosurgery should be considered earlier in the course of treatment for TN.

Restricted access

Adomas Bunevicius, Mohand Suleiman, Samir Patel, Roberto Martínez Álvarez, Nuria E. Martinez Moreno, Roman Liscak, Jaromir Hanuska, Anne-Marie Langlois, David Mathieu, Christine Mau, Catherine Caldwell, Leonard C. Tuanquin, Brad E. Zacharia, James McInerney, Cheng-Chia Lee, Huai-Che Yang, Jennifer L. Peterson, Daniel M. Trifiletti, Akiyoshi Ogino, Hideyuki Kano, Ronald E. Warnick, Anissa Saylany, Love Y. Buch, John Y. K. Lee, Ben A. Strickland, Gabriel Zada, Eric L. Chang, L. Dade Lunsford, and Jason Sheehan

OBJECTIVE

Radiation-induced meningiomas (RIMs) are associated with aggressive clinical behavior. Stereotactic radiosurgery (SRS) is sometimes considered for selected RIMs. The authors investigated the effectiveness and safety of SRS for the management of RIMs.

METHODS

From 12 institutions participating in the International Radiosurgery Research Foundation, the authors pooled patients who had prior cranial irradiation and were subsequently clinically diagnosed with WHO grade I meningiomas that were managed with SRS.

RESULTS

Fifty-two patients underwent 60 SRS procedures for histologically confirmed or radiologically suspected WHO grade I RIMs. The median ages at initial cranial radiation therapy and SRS for RIM were 5.5 years and 39 years, respectively. The most common reasons for cranial radiation therapy were leukemia (21%) and medulloblastoma (17%). There were 39 multiple RIMs (35%), the mean target volume was 8.61 ± 7.80 cm3, and the median prescription dose was 14 Gy. The median imaging follow-up duration was 48 months (range 4–195 months). RIM progressed in 9 patients (17%) at a median duration of 30 months (range 3–45 months) after SRS. Progression-free survival at 5 years post-SRS was 83%. Treatment volume ≥ 5 cm3 predicted progression (HR 8.226, 95% CI 1.028–65.857, p = 0.047). Seven patients (14%) developed new neurological symptoms or experienced SRS-related complications or T2 signal change from 1 to 72 months after SRS.

CONCLUSIONS

SRS is associated with durable local control of RIMs in the majority of patients and has an acceptable safety profile. SRS can be considered for patients and tumors that are deemed suboptimal, poor surgical candidates, and those whose tumor again progresses after removal.