Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ailish Coblentz x
  • All content x
Clear All Modify Search
Restricted access

Alexandre Boutet, Ileana Hancu, Utpal Saha, Adrian Crawley, David S. Xu, Manish Ranjan, Eugen Hlasny, Robert Chen, Warren Foltz, Francesco Sammartino, Ailish Coblentz, Walter Kucharczyk, and Andres M. Lozano

OBJECTIVE

Physicians are more frequently encountering patients who are treated with deep brain stimulation (DBS), yet many MRI centers do not routinely perform MRI in this population. This warrants a safety assessment to improve DBS patients’ accessibility to MRI, thereby improving their care while simultaneously providing a new tool for neuromodulation research.

METHODS

A phantom simulating a patient with a DBS neuromodulation device (DBS lead model 3387 and IPG Activa PC model 37601) was constructed and used. Temperature changes at the most ventral DBS electrode contacts, implantable pulse generator (IPG) voltages, specific absorption rate (SAR), and B1+rms were recorded during 3-T MRI scanning. Safety data were acquired with a transmit body multi-array receive and quadrature transmit-receive head coil during various pulse sequences, using numerous DBS configurations from “the worst” to “the most common.”

In addition, 3-T MRI scanning (T1 and fMRI) was performed on 41 patients with fully internalized and active DBS using a quadrature transmit-receive head coil. MR images, neurological examination findings, and stability of the IPG impedances were assessed.

RESULTS

In the phantom study, temperature rises at the DBS electrodes were less than 2°C for both coils during 3D SPGR, EPI, DTI, and SWI. Sequences with intense radiofrequency pulses such as T2-weighted sequences may cause higher heating (due to their higher SAR). The IPG did not power off and kept a constant firing rate, and its average voltage output was unchanged. The 41 DBS patients underwent 3-T MRI with no adverse event.

CONCLUSIONS

Under the experimental conditions used in this study, 3-T MRI scanning of DBS patients with selected pulse sequences appears to be safe. Generally, T2-weighted sequences (using routine protocols) should be avoided in DBS patients. Complementary 3-T MRI phantom safety data suggest that imaging conditions that are less restrictive than those used in the patients in this study, such as using transmit body multi-array receive coils, may also be safe. Given the interplay between the implanted DBS neuromodulation device and the MRI system, these findings are specific to the experimental conditions in this study.

Restricted access

Ailish Coblentz, Gavin J. B. Elias, Alexandre Boutet, Jurgen Germann, Musleh Algarni, Lais M. Oliveira, Clemens Neudorfer, Elysa Widjaja, George M. Ibrahim, Suneil K. Kalia, Mehr Jain, Andres M. Lozano, and Alfonso Fasano

OBJECTIVE

The objective of this study was to report the authors’ experience with deep brain stimulation (DBS) of the internal globus pallidus (GPi) as a treatment for pediatric dystonia, and to elucidate substrates underlying clinical outcome using state-of-the-art neuroimaging techniques.

METHODS

A retrospective analysis was conducted in 11 pediatric patients (6 girls and 5 boys, mean age 12 ± 4 years) with medically refractory dystonia who underwent GPi-DBS implantation between June 2009 and September 2017. Using pre- and postoperative MRI, volumes of tissue activated were modeled and weighted by clinical outcome to identify brain regions associated with clinical outcome. Functional and structural networks associated with clinical benefits were also determined using large-scale normative data sets.

RESULTS

A total of 21 implanted leads were analyzed in 11 patients. The average follow-up duration was 19 ± 20 months (median 5 months). Using a 7-point clinical rating scale, 10 patients showed response to treatment, as defined by scores < 3. The mean improvement in the Burke-Fahn-Marsden Dystonia Rating Scale motor score was 40% ± 23%. The probabilistic map of efficacy showed that the voxel cluster most associated with clinical improvement was located at the posterior aspect of the GPi, comparatively posterior and superior to the coordinates of the classic GPi target. Strong functional and structural connectivity was evident between the probabilistic map and areas such as the precentral and postcentral gyri, parietooccipital cortex, and brainstem.

CONCLUSIONS

This study reported on a series of pediatric patients with dystonia in whom GPi-DBS resulted in variable clinical benefit and described a clinically favorable stimulation site for this cohort, as well as its structural and functional connectivity. This information could be valuable for improving surgical planning, simplifying programming, and further informing disease pathophysiology.