Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Adrian E. Jimenez x
Clear All Modify Search
Restricted access

Adham M. Khalafallah, Sakibul Huq, Adrian E. Jimenez, Henry Brem and Debraj Mukherjee

OBJECTIVE

Health measures such as the Charlson Comorbidity Index (CCI) and the 11-factor modified frailty index (mFI-11) have been employed to predict general medical and surgical mortality, but their clinical utility is limited by the requirement for a large number of data points, some of which overlap or require data that may be unavailable in large datasets. A more streamlined 5-factor modified frailty index (mFI-5) was recently developed to overcome these barriers, but it has not been widely tested in neuro-oncology patient populations. The authors compared the utility of the mFI-5 to that of the CCI and the mFI-11 in predicting postoperative mortality in brain tumor patients.

METHODS

The authors retrospectively reviewed a cohort of adult patients from a single institution who underwent brain tumor surgery during the period from January 2017 to December 2018. Logistic regression models were used to quantify the associations between health measure scores and postoperative mortality after adjusting for patient age, race, ethnicity, sex, marital status, and diagnosis. Results were considered statistically significant at p values ≤ 0.05. Receiver operating characteristic (ROC) curves were used to examine the relationships between CCI, mFI-11, and mFI-5 and mortality, and DeLong’s test was used to test for significant differences between c-statistics. Spearman’s rho was used to quantify correlations between indices.

RESULTS

The study cohort included 1692 patients (mean age 55.5 years; mean CCI, mFI-11, and mFI-5 scores 2.49, 1.05, and 0.80, respectively). Each 1-point increase in mFI-11 (OR 4.19, p = 0.0043) and mFI-5 (OR 2.56, p = 0.018) scores independently predicted greater odds of 90-day postoperative mortality. Adjusted CCI, mFI-11, and mFI-5 ROC curves demonstrated c-statistics of 0.86 (CI 0.82–0.90), 0.87 (CI 0.83–0.91), and 0.87 (CI 0.83–0.91), respectively, and there was no significant difference between the c-statistics of the adjusted CCI and the adjusted mFI-5 models (p = 0.089) or between the adjusted mFI-11 and the adjusted mFI-5 models (p = 0.82). The 3 indices were well correlated (p < 0.01).

CONCLUSIONS

The adjusted mFI-5 model predicts 90-day postoperative mortality among brain tumor patients as well as our adjusted CCI and adjusted mFI-11 models. The simplified mFI-5 may be easily integrated into clinical workflows to predict brain tumor surgery outcomes in real time.

Restricted access

Sakibul Huq, Adham M. Khalafallah, David Botros, Adrian E. Jimenez, Shravika Lam, Judy Huang and Debraj Mukherjee

Restricted access

Adham M. Khalafallah, Adrian E. Jimenez, Rafael J. Tamargo, Timothy Witham, Judy Huang, Henry Brem and Debraj Mukherjee

OBJECTIVE

Previous authors have investigated many factors that predict an academic neurosurgical career over private practice, including attainment of a Doctor of Philosophy (PhD) and number of publications. Research has yet to demonstrate whether a master’s degree predicts an academic neurosurgical career. This study quantifies the association between obtaining a Master of Science (MS), Master of Public Health (MPH), or Master of Business Administration (MBA) degree and pursuing a career in academic neurosurgery.

METHODS

Public data on neurosurgeons who had graduated from Accreditation Council for Graduate Medical Education (ACGME)–accredited residency programs in the period from 1949 to 2019 were collected from residency and professional websites. Residency graduates with a PhD were excluded to isolate the effect of only having a master’s degree. A position was considered “academic” if it was affiliated with a hospital that had a neurosurgery residency program; other positions were considered nonacademic. Bivariate analyses were performed with Fisher’s exact test. Multivariate analysis was performed using a logistic regression model.

RESULTS

Within our database of neurosurgery residency alumni, there were 47 (4.1%) who held an MS degree, 31 (2.7%) who held an MPH, and 10 (0.9%) who held an MBA. In bivariate analyses, neurosurgeons with MS degrees were significantly more likely to pursue academic careers (OR 2.65, p = 0.0014, 95% CI 1.40–5.20), whereas neurosurgeons with an MPH (OR 1.41, p = 0.36, 95% CI 0.64–3.08) or an MBA (OR 1.00, p = 1.00, 95% CI 0.21–4.26) were not. In the multivariate analysis, an MS degree was independently associated with an academic career (OR 2.48, p = 0.0079, 95% CI 1.28–4.93). Moreover, postresidency h indices of 1 (OR 1.44, p = 0.048, 95% CI 1.00–2.07), 2–3 (OR 2.76, p = 2.01 × 10−8, 95% CI 1.94–3.94), and ≥ 4 (OR 4.88, p < 2.00 × 10−16, 95% CI 3.43–6.99) were all significantly associated with increased odds of pursuing an academic career. Notably, having between 1 and 11 months of protected research time was significantly associated with decreased odds of pursuing academic neurosurgery (OR 0.46, p = 0.049, 95% CI 0.21–0.98).

CONCLUSIONS

Neurosurgery residency graduates with MS degrees are more likely to pursue academic neurosurgical careers relative to their non-MS counterparts. Such findings may be used to help predict residency graduates’ future potential in academic neurosurgery.

Restricted access

Adham M. Khalafallah, Adrian E. Jimenez, Justin M. Caplan, Cameron G. McDougall, Judy Huang, Debraj Mukherjee and Rafael J. Tamargo

OBJECTIVE

Although previous studies have explored factors that predict an academic career among neurosurgery residents in general, such predictors have yet to be determined within specific neurosurgical subspecialties. The authors report on predictors they identified as correlating with academic placement among fellowship-trained vascular neurosurgeons.

METHODS

A database was created that included all physicians who graduated from ACGME (Accreditation Council for Graduate Medical Education)–accredited neurosurgery residency programs between 1960 and 2018 using publicly available online data. Neurosurgeons who completed either open vascular or endovascular fellowships were identified. Subsequent employment of vascular or endovascular neurosurgeons in academic centers was determined. A position was considered academic if the hospital of employment was affiliated with a neurosurgery residency program; all other positions were considered non-academic. Bivariate analyses were conducted using Fisher’s exact test or the Mann-Whitney U-test, and multivariate analysis was performed using a logistic regression model.

RESULTS

A total of 83 open vascular neurosurgeons and 115 endovascular neurosurgeons were identified. In both cohorts, the majority of neurosurgeons were employed in academic positions after training. In bivariate analysis, only 2 factors were significantly associated with a career in academic neurosurgery for open vascular neurosurgeons: 1) an h-index of ≥ 2 during residency (OR 3.71, p = 0.016), and 2) attending a top 10 residency program based on U.S. News and World Report rankings (OR 4.35, p = 0.030). In bivariate analysis, among endovascular neurosurgeons, having an h-index of ≥ 2 during residency (OR 4.35, p = 0.0085) and attending a residency program affiliated with a top 10 U.S. News and World Report medical school (OR 2.97, p = 0.029) were significantly associated with an academic career. In multivariate analysis, for both open vascular and endovascular neurosurgeons, an h-index of ≥ 2 during residency was independently predictive of an academic career. Attending a residency program affiliated with a top 10 U.S. News and World Report medical school independently predicted an academic career among endovascular neurosurgeons only.

CONCLUSIONS

The authors report that an h-index of ≥ 2 during residency predicts pursuit of an academic career among vascular and endovascular neurosurgeons. Additionally, attendance of a residency program affiliated with a top research medical school independently predicts an academic career trajectory among endovascular neurosurgeons. This result may be useful to identify and mentor residents interested in academic vascular neurosurgery.

Restricted access

Adham M. Khalafallah, Adrian E. Jimenez, Carlos G. Romo, David Olayinka Kamson, Lawrence Kleinberg, Jon Weingart, Henry Brem, Stuart A. Grossman and Debraj Mukherjee

OBJECTIVE

There has been limited research on the efficacy of multidisciplinary tumor boards (MDTBs) in improving the treatment of patients with tumors affecting the nervous system. The objective of the present study was to quantify the utility of MDTBs in providing alternative diagnostic interpretations and treatment plans for this patient population.

METHODS

The authors performed a prospective study of patients in 4 hospitals whose cases were discussed at MDTBs between July and November 2019. Patient demographic data, diagnoses, treatment plans, and eligibility for clinical trials were recorded, among other variables.

RESULTS

A total of 176 cases met eligibility criteria for study inclusion. The majority (53%) of patients were male, and the mean patient age was 52 years. The most frequent diagnosis was glioblastoma (32.4%). Among the evaluable cases, MDTBs led to 38 (21.6%) changes in image interpretation and 103 (58.2%) changes in patient management. Additionally, patients whose cases were discussed at MDTBs had significantly shorter referral times than patients whose cases were not discussed (p = 0.024).

CONCLUSIONS

MDTB discussions led to significant numbers of diagnostic and treatment plan changes as well as shortened referral times, highlighting the potential clinical impact of multidisciplinary care for patients with nervous system tumors.