Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Adelheid Wöhrer x
Clear All Modify Search
Full access

Alexander S. G. Micko, Adelheid Wöhrer, Stefan Wolfsberger and Engelbert Knosp

OBJECT

An important prognostic factor for the surgical outcome and recurrence of a pituitary adenoma is its invasiveness into parasellar tissue, particularly into the space of the cavernous sinus (CS). The aims of this study were to reevaluate the existing parasellar classifications using an endoscopic technique and to evaluate the clinical and radiological outcomes associated with each grade.

METHODS

The authors investigated 137 pituitary macroadenomas classified radiologically at least on one side as Grade 1 or higher (parasellar extension) and correlated the surgical findings using an endoscopic technique, with special reference to the invasiveness of the tumor into the CS. In each case, postoperative MRI was performed to evaluate the gross-total resection (GTR) rate and the rate of endocrinological remission (ER) in functioning adenomas.

RESULTS

The authors found a 16% rate of CS invasion during surgery for these macroadenomas. Adenomas radiologically classified as Grade 1 were found to be invasive in 1.5%, and the GTR/ER rate was 83%/88%. For Grade 2 adenomas, the rate of invasion was 9.9%, and the GTR/ER rate was 71%/60%. For Grade 3 adenomas, the rate of invasion was 37.9%, and the GTR/ER rate was 75%/33%. When the superior compartment of the CS (Grade 3A) was involved, the authors found a rate of invasion that was lower (p < 0.001) than that when the inferior compartment was involved (Grade 3B). The rate of invasion in Grade 3A adenomas was 26.5% with a GTR/ER rate of 85%/67%, whereas for Grade 3B adenomas, the rate of surgically observed invasion was 70.6% with a GTR/ER rate of 64%/0%. All of the Grade 4 adenomas were invasive, and the GTR/ER rate was 0%.

A comparison of microscopic and endoscopic techniques revealed no difference in adenomas with Grade 1 or 4 parasellar extension. In Grade 2 adenomas, however, the CS was found by the endoscopic technique to be invaded in 9.9% and by microscopic evaluation to be invaded in 88% (p < 0.001); in Grade 3 adenomas, the difference was 37.9% versus 86%, respectively (p = 0.002). Grade 4 adenomas had a statistically significant lower rate of GTR than those of all the other grades. In case of ER only, Grade 1 adenomas had a statistically significant higher rate of remission than did Grade 3B and Grade 4 adenomas.

CONCLUSIONS

The proposed classification proved that with increasing grades, the likelihood of surgically observed invasion rises and the chance of GTR and ER decreases. The direct endoscopic view confirmed the low rate of invasion of Grade 1 adenomas but showed significantly lower rates of invasion in Grade 2 and 3 adenomas than those previously found using the microscopic technique. In cases in which the intracavernous internal carotid artery was encased (Grade 4), all the adenomas were invasive and the GTR/ER rate was 0%/0%. The authors suggest the addition of Grades 3A and 3B to distinguish the strikingly different outcomes of adenomas invading the superior CS compartments and those invading the inferior CS compartments.

Free access

Aygül Mert, Barbara Kiesel, Adelheid Wöhrer, Mauricio Martínez-Moreno, Georgi Minchev, Julia Furtner, Engelbert Knosp, Stefan Wolfsberger and Georg Widhalm

OBJECT

Surgery of suspected low-grade gliomas (LGGs) poses a special challenge for neurosurgeons due to their diffusely infiltrative growth and histopathological heterogeneity. Consequently, neuronavigation with multimodality imaging data, such as structural and metabolic data, fiber tracking, and 3D brain visualization, has been proposed to optimize surgery. However, currently no standardized protocol has been established for multimodality imaging data in modern glioma surgery. The aim of this study was therefore to define a specific protocol for multimodality imaging and navigation for suspected LGG.

METHODS

Fifty-one patients who underwent surgery for a diffusely infiltrating glioma with nonsignificant contrast enhancement on MRI and available multimodality imaging data were included. In the first 40 patients with glioma, the authors retrospectively reviewed the imaging data, including structural MRI (contrast-enhanced T1-weighted, T2-weighted, and FLAIR sequences), metabolic images derived from PET, or MR spectroscopy chemical shift imaging, fiber tracking, and 3D brain surface/vessel visualization, to define standardized image settings and specific indications for each imaging modality. The feasibility and surgical relevance of this new protocol was subsequently prospectively investigated during surgery with the assistance of an advanced electromagnetic navigation system in the remaining 11 patients. Furthermore, specific surgical outcome parameters, including the extent of resection, histological analysis of the metabolic hotspot, presence of a new postoperative neurological deficit, and intraoperative accuracy of 3D brain visualization models, were assessed in each of these patients.

RESULTS

After reviewing these first 40 cases of glioma, the authors defined a specific protocol with standardized image settings and specific indications that allows for optimal and simultaneous visualization of structural and metabolic data, fiber tracking, and 3D brain visualization. This new protocol was feasible and was estimated to be surgically relevant during navigation-guided surgery in all 11 patients. According to the authors' predefined surgical outcome parameters, they observed a complete resection in all resectable gliomas (n = 5) by using contour visualization with T2-weighted or FLAIR images. Additionally, tumor tissue derived from the metabolic hotspot showed the presence of malignant tissue in all WHO Grade III or IV gliomas (n = 5). Moreover, no permanent postoperative neurological deficits occurred in any of these patients, and fiber tracking and/or intraoperative monitoring were applied during surgery in the vast majority of cases (n = 10). Furthermore, the authors found a significant intraoperative topographical correlation of 3D brain surface and vessel models with gyral anatomy and superficial vessels. Finally, real-time navigation with multimodality imaging data using the advanced electromagnetic navigation system was found to be useful for precise guidance to surgical targets, such as the tumor margin or the metabolic hotspot.

CONCLUSIONS

In this study, the authors defined a specific protocol for multimodality imaging data in suspected LGGs, and they propose the application of this new protocol for advanced navigation-guided procedures optimally in conjunction with continuous electromagnetic instrument tracking to optimize glioma surgery.

Full access

Matthias Millesi, Barbara Kiesel, Mario Mischkulnig, Mauricio Martínez-Moreno, Adelheid Wöhrer, Stefan Wolfsberger, Engelbert Knosp and Georg Widhalm

OBJECTIVE

One of the most important causes for recurrence of intracranial meningiomas is residual tumor tissue that remains despite assumed complete resection. Recently, intraoperative visualization of meningioma tissue by 5-aminolevulinic acid (5-ALA)–induced protoporphyrin IX (PpIX) fluorescence was reported. The aim of this study was to investigate the possible surgical benefits of PpIX fluorescence for detection of meningioma tissue.

METHODS

5-ALA was administered preoperatively to 190 patients undergoing resection of 204 intracranial meningiomas. The meningiomas' PpIX fluorescence status, fluorescence quality (strong or vague), and intratumoral fluorescence homogeneity were investigated during surgery. Additionally, specific sites, including the dural tail, tumor-infiltrated bone flap, adjacent cortex, and potential satellite lesions, were analyzed for PpIX fluorescence in selected cases.

RESULTS

PpIX fluorescence was observed in 185 (91%) of 204 meningiomas. In the subgroup of sphenoorbital meningiomas (12 of 204 cases), the dural part showed visible PpIX fluorescence in 9 cases (75%), whereas the bony part did not show any PpIX fluorescence in 10 cases (83%). Of all fluorescing meningiomas, 168 (91%) showed strong PpIX fluorescence. Typically, most meningiomas demonstrated homogeneous fluorescence (75% of cases). No PpIX fluorescence was observed in any of the investigated 89 dural tails. In contrast, satellite lesions could be identified through PpIX fluorescence in 7 cases. Furthermore, tumor-infiltrated bone flaps could be visualized by PpIX fluorescence in all 13 cases. Notably, PpIX fluorescence was also present in the adjacent cortex in 20 (25%) of 80 analyzed cases.

CONCLUSIONS

The authors' data from this largest patient cohort to date indicate that PpIX fluorescence enables intraoperatively visualization of most intracranial meningiomas and allows identification of residual tumor tissue at specific sites. Thus, intraoperative detection of residual meningioma tissue by PpIX fluorescence might in future reduce the risk of recurrence.