Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Adam Robin x
Clear All Modify Search
Full access

Jessin K. John, Adam M. Robin, Aqueel H. Pabaney, Richard A. Rammo, Lonni R. Schultz, Neema S. Sadry and Ian Y. Lee

OBJECTIVE

Recent studies have demonstrated that periventricular tumor location is associated with poorer survival and that tumor location near the ventricle limits the extent of resection. This finding may relate to the perception that ventricular entry leads to further complications and thus surgeons may choose to perform less aggressive resection in these areas. However, there is little support for this view in the literature. This study seeks to determine whether ventricular entry is associated with more complications during craniotomy for brain tumor resection.

METHODS

A retrospective analysis of patients who underwent craniotomy for tumor resection at Henry Ford Hospital between January 2010 and November 2012 was conducted. A total of 183 cases were reviewed with attention to operative entry into the ventricular system, postoperative use of an external ventricular drain (EVD), subdural hematoma, hydrocephalus, and symptomatic intraventricular hemorrhage (IVH).

RESULTS

Patients in whom the ventricles were entered had significantly higher rates of any complication (46% vs 21%). Complications included development of subdural hygroma, subdural hematoma, intraventricular hemorrhage, subgaleal collection, wound infection, urinary tract infection/deep venous thrombosis, hydrocephalus, and ventriculoperitoneal (VP) shunt placement. Specifically, these patients had significantly higher rates of EVD placement (23% vs 1%, p < 0.001), hydrocephalus (6% vs 0%, p = 0.03), IVH (14% vs 0%, p < 0.001), infection (15% vs 5%, p = 0.04), and subgaleal collection (20% vs 4%, p < 0.001). It was also observed that VP shunt placement was only seen in cases of ventricular entry (11% vs 0%, p = 0.001) with 3 of 4 of these patients having a large ventricular entry (defined here as entry greater than a pinhole [< 3 mm] entry). Furthermore, in a subset of glioblastoma patients with and without ventricular entry, Kaplan-Meier estimates for survival demonstrated a median survival time of 329 days for ventricular entry compared with 522 days for patients with no ventricular entry (HR 1.13, 95% CI 0.65–1.96; p = 0.67).

CONCLUSIONS

There are more complications associated with ventricular entry during brain tumor resection than in nonviolated ventricular systems. Better strategies for management of periventricular tumor resection should be actively sought to improve resection and survival for these patients.

Restricted access

Nohra Chalouhi, Nikolaos Mouchtouris, Fadi Al Saiegh, Somnath Das, Ahmad Sweid, Adam E. Flanders, Robert M. Starke, Michael P. Baldassari, Stavropoula Tjoumakaris, Michael Reid Gooch, Syed Omar Shah, David Hasan, Nabeel Herial, Robin D’Ambrosio, Robert Rosenwasser and Pascal Jabbour

OBJECTIVE

MRI and MRA studies are routinely obtained to identify the etiology of intracerebral hemorrhage (ICH). The diagnostic yield of MRI/MRA in the setting of an acute ICH, however, remains unclear. The authors’ goal was to determine the utility of early MRI/MRA in detecting underlying structural lesions in ICH and to identify patients in whom additional imaging during hospitalization could safely be foregone.

METHODS

The authors reviewed data obtained in 400 patients with spontaneous ICH diagnosed on noncontrast head CT scans who underwent MRI/MRA between 2015 and 2017 at their institution. MRI/MRA studies were reviewed to identify underlying lesions, such as arteriovenous malformations, aneurysms, cavernous malformations, arteriovenous fistulas, tumors, sinus thrombosis, moyamoya disease, and abscesses.

RESULTS

The median patient age was 65 ± 15.8 years. Hypertension was the most common (72%) comorbidity. Structural abnormalities were detected on MRI/MRA in 12.5% of patients. Structural lesions were seen in 5.7% of patients with basal ganglia/thalamic ICH, 14.1% of those with lobar ICH, 20.4% of those with cerebellar ICH, and 27.8% of those with brainstem ICH. Notably, the diagnostic yield of MRI/MRA was 0% in patients > 65 years with a basal ganglia/thalamic hemorrhage and 0% in those > 85 years with any ICH location, whereas it was 37% in patients < 50 years and 23% in those < 65 years. Multivariate analysis showed that decreasing age, absence of hypertension, and non–basal ganglia/thalamic location were predictors of finding an underlying lesion.

CONCLUSIONS

The yield of MRI/MRA in ICH is highly variable, depending on patient age and hemorrhage location. The findings of this study do not support obtaining early MRI/MRA studies in patients ≥ 65 years with basal ganglia/thalamic ICH or in any ICH patients ≥ 85 years. In all other situations, early MRI/MRA remains valuable in ruling out underlying lesions.