Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Abuzer Güngör x
Clear All Modify Search
Free access

Abuzer Güngör, Serhat Baydin, Erik H. Middlebrooks, Necmettin Tanriover, Cihan Isler and Albert L. Rhoton Jr.

OBJECTIVE

The relationship of the white matter tracts to the lateral ventricles is important when planning surgical approaches to the ventricles and in understanding the symptoms of hydrocephalus. The authors' aim was to explore the relationship of the white matter tracts of the cerebrum to the lateral ventricles using fiber dissection technique and MR tractography and to discuss these findings in relation to approaches to ventricular lesions.

METHODS

Forty adult human formalin-fixed cadaveric hemispheres (20 brains) and 3 whole heads were examined using fiber dissection technique. The dissections were performed from lateral to medial, medial to lateral, superior to inferior, and inferior to superior. MR tractography showing the lateral ventricles aided in the understanding of the 3D relationships of the white matter tracts with the lateral ventricles.

RESULTS

The relationship between the lateral ventricles and the superior longitudinal I, II, and III, arcuate, vertical occipital, middle longitudinal, inferior longitudinal, inferior frontooccipital, uncinate, sledge runner, and lingular amygdaloidal fasciculi; and the anterior commissure fibers, optic radiations, internal capsule, corona radiata, thalamic radiations, cingulum, corpus callosum, fornix, caudate nucleus, thalamus, stria terminalis, and stria medullaris thalami were defined anatomically and radiologically. These fibers and structures have a consistent relationship to the lateral ventricles.

CONCLUSIONS

Knowledge of the relationship of the white matter tracts of the cerebrum to the lateral ventricles should aid in planning more accurate surgery for lesions within the lateral ventricles.

Restricted access

Satoshi Matsuo, Serhat Baydin, Abuzer Güngör, Erik H. Middlebrooks, Noritaka Komune, Koji Iihara and Albert L. Rhoton Jr.

OBJECTIVE

A postoperative visual field defect resulting from damage to the occipital lobe during surgery is a unique complication of the occipital transtentorial approach. Though the association between patient position and this complication is well investigated, preventing the complication remains a challenge. To define the area of the occipital lobe in which retraction is least harmful, the surface anatomy of the brain, course of the optic radiations, and microsurgical anatomy of the occipital transtentorial approach were examined.

METHODS

Twelve formalin-fixed cadaveric adult heads were examined with the aid of a surgical microscope and 0° and 45° endoscopes. The optic radiations were examined by fiber dissection and MR tractography techniques.

RESULTS

The arterial and venous relationships of the lateral, medial, and inferior surfaces of the occipital lobe were defined anatomically. The full course of the optic radiations was displayed via both fiber dissection and MR tractography. Although the stems of the optic radiations as exposed by both techniques are similar, the terminations of the fibers are slightly different. The occipital transtentorial approach provides access for the removal of lesions involving the splenium, pineal gland, collicular plate, cerebellomesencephalic fissure, and anterosuperior part of the cerebellum. An angled endoscope can aid in exposing the superior medullary velum and superior cerebellar peduncles.

CONCLUSIONS

Anatomical findings suggest that retracting the inferior surface of the occipital lobe may avoid direct damage and perfusion deficiency around the calcarine cortex and optic radiations near their termination. An accurate understanding of the course of the optic radiations and vascular relationships around the occipital lobe and careful retraction of the inferior surface of the occipital lobe may reduce the incidence of postoperative visual field defect.

Full access

Satoshi Matsuo, Serhat Baydin, Abuzer Güngör, Koichi Miki, Noritaka Komune, Ryota Kurogi, Koji Iihara and Albert L. Rhoton Jr.

OBJECTIVE

A common approach to lesions of the pineal region is along the midline below the torcula. However, reports of how shifting the approach off midline affects the surgical exposure and relationships between the tributaries of the vein of Galen are limited. The purpose of this study is to examine the microsurgical and endoscopic anatomy of the pineal region as seen through the supracerebellar infratentorial approaches, including midline, paramedian, lateral, and far-lateral routes.

METHODS

The quadrigeminal cisterns of 8 formalin-fixed adult cadaveric heads were dissected and examined with the aid of a surgical microscope and straight endoscope. Twenty CT angiograms were examined to measure the depth of the pineal gland, slope of the tentorial surface of the cerebellum, and angle of approach to the pineal gland in each approach.

RESULTS

The midline supracerebellar route is the shortest and provides direct exposure of the pineal gland, although the culmen and inferior and superior vermian tributaries of the vein of Galen frequently block this exposure. The off-midline routes provide a surgical exposure that, although slightly deeper, may reduce the need for venous sacrifice at both the level of the veins from the superior cerebellar surface entering the tentorial sinuses and at the level of the tributaries of the vein of Galen in the quadrigeminal cistern, and require less cerebellar retraction. Shifting from midline to off-midline exposure also provides a better view of the cerebellomesencephalic fissure, collicular plate, and trochlear nerve than the midline approaches. Endoscopic assistance may aid exposure of the pineal gland while preserving the bridging veins.

CONCLUSIONS

Understanding the characteristics of different infratentorial routes to the pineal gland will aid in gaining a better view of the pineal gland and cerebellomesencephalic fissure and may reduce the need for venous sacrifice at the level of the tentorial sinuses draining the upper cerebellar surface and the tributaries of the vein of Galen.

Full access

Christos Koutsarnakis, Faidon Liakos, Aristotelis V. Kalyvas, Spyros Komaitis and George Stranjalis

Free access

Osamu Akiyama, Ken Matsushima, Abuzer Gungor, Satoshi Matsuo, Dylan J. Goodrich, R. Shane Tubbs, Paul Klimo Jr., Aaron A. Cohen-Gadol, Hajime Arai and Albert L. Rhoton Jr.

OBJECTIVE

Approaches to the pulvinar remain challenging because of the depth of the target, surrounding critical neural structures, and complicated arterial and venous relationships. The purpose of this study was to compare the surgical approaches to different parts of the pulvinar and to examine the efficacy of the endoscope as an adjunct to the operating microscope in this area.

METHODS

The pulvinar was examined in 6 formalin-fixed human cadaveric heads through 5 approaches: 4 above and 1 below the tentorium. Each approach was performed using both the surgical microscope and 0° or 45° rigid endoscopes.

RESULTS

The pulvinar has a lateral ventricular and a medial cisternal surface that are separated by the fornix and the choroidal fissure, which wrap around the posterior surface of the pulvinar. The medial cisternal part of the pulvinar can be further divided into upper and lower parts. The superior parietal lobule approach is suitable for lesions in the upper ventricular and cisternal parts. Interhemispheric precuneus and posterior transcallosal approaches are suitable for lesions in the part of the pulvinar forming the anterior wall of the atrium and adjacent cisternal part. The posterior interhemispheric transtentorial approach is suitable for lesions in the lower cisternal part and the supracerebellar infratentorial approach is suitable for lesions in the inferior and medial cisternal parts.

The microscope provided satisfactory views of the ventricular and cisternal surfaces of the pulvinar and adjacent neural and vascular structures. The endoscope provided multi-angled and wider views of the pulvinar and adjacent structures.

CONCLUSIONS

A combination of endoscopic and microsurgical techniques allows optimal exposure of the pulvinar.

Restricted access

Abuzer Güngör, Şevki Serhat Baydın, Vanessa M. Holanda, Erik H. Middlebrooks, Cihan Isler, Bekir Tugcu, Kelly Foote and Necmettin Tanriover

In Brief

Familiarity with the complex 3D anatomy of the STN and peri-subthalamic area is important for more effective targeting of the STN and better understanding of DBS side effects. The combination of meticulous anatomic dissections of the STN region and detailed discussions of pertinent anatomo-functional relationships in this paper will provide DBS practitioners with a more sophisticated understanding of this important brain region and empower them to improve the outcomes of STN DBS for their patients.