Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Abdulgadir Bugdadi x
Clear All Modify Search
Full access

Robin Sawaya, Ghusn Alsideiri, Abdulgadir Bugdadi, Alexander Winkler-Schwartz, Hamed Azarnoush, Khalid Bajunaid, Abdulrahman J. Sabbagh and Rolando Del Maestro

OBJECTIVE

Previous work from the authors has shown that hand ergonomics plays an important role in surgical psychomotor performance during virtual reality brain tumor resections. In the current study they propose a hypothetical model that integrates the human and task factors at play during simulated brain tumor resections to better understand the hand ergonomics needed for optimal safety and efficiency. They hypothesize that 1) experts (neurosurgeons), compared to novices (residents and medical students), spend a greater proportion of their time in direct contact with critical tumor areas; 2) hand ergonomic conditions (most favorable to unfavorable) prompt participants to adapt in order to optimize tumor resection; and 3) hand ergonomic adaptation is acquired with increasing expertise.

METHODS

In an earlier study, experts (neurosurgeons) and novices (residents and medical students) were instructed to resect simulated brain tumors on the NeuroVR (formerly NeuroTouch) virtual reality neurosurgical simulation platform. For the present study, the simulated tumors were divided into four quadrants (Q1 to Q4) to assess hand ergonomics at various levels of difficulty. The spatial distribution of time expended, force applied, and tumor volume removed was analyzed for each participant group (total of 22 participants).

RESULTS

Neurosurgeons spent a significantly greater percentage of their time in direct contact with critical tumor areas. Under the favorable hand ergonomic conditions of Q1 and Q3, neurosurgeons and senior residents spent significantly more time in Q1 than in Q3. Although forces applied in these quadrants were similar, neurosurgeons, having spent more time in Q1, removed significantly more tumor in Q1 than in Q3. In a comparison of the most favorable (Q2) to unfavorable (Q4) hand ergonomic conditions, neurosurgeons adapted the forces applied in each quadrant to resect similar tumor volumes. Differences between Q2 and Q4 were emphasized in measures of force applied per second, tumor volume removed per second, and tumor volume removed per unit of force applied. In contrast, the hand ergonomics of medical students did not vary across quadrants, indicating the existence of an “adaptive capacity” in neurosurgeons.

CONCLUSIONS

The study results confirm the experts’ (neurosurgeons) greater capacity to adapt their hand ergonomics during simulated neurosurgical tasks. The proposed hypothetical model integrates the study findings with various human and task factors that highlight the importance of learning in the acquisition of hand ergonomic adaptation.

Full access

Hamed Azarnoush, Samaneh Siar, Robin Sawaya, Gmaan Al Zhrani, Alexander Winkler-Schwartz, Fahad Eid Alotaibi, Abdulgadir Bugdadi, Khalid Bajunaid, Ibrahim Marwa, Abdulrahman Jafar Sabbagh and Rolando F. Del Maestro

OBJECTIVE

Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors?

METHODS

Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip.

RESULTS

Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D “force pyramid fingerprints.” Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns.

CONCLUSIONS

Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection.