Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Aaron Viser x
  • Refine by Access: all x
Clear All Modify Search
Free access

Marta San Luciano, Amy Robichaux-Viehoever, Kristen A. Dodenhoff, Melissa L. Gittings, Aaron C. Viser, Caroline A. Racine, Ian O. Bledsoe, Christa Watson Pereira, Sarah S. Wang, Philip A. Starr, and Jill L. Ostrem

OBJECTIVE

The aim of this study was to evaluate the feasibility and preliminary efficacy and safety of combined bilateral ventralis oralis posterior/ventralis intermedius (Vop/Vim) deep brain stimulation (DBS) for the treatment of acquired dystonia in children and young adults. Pallidal DBS is efficacious for severe, medication-refractory isolated dystonia, providing 50%–60% long-term improvement. Unfortunately, pallidal stimulation response rates in acquired dystonia are modest and unpredictable, with frequent nonresponders. Acquired dystonia, most commonly caused by cerebral palsy, is more common than isolated dystonia in pediatric populations and is more recalcitrant to standard treatments. Given the limitations of pallidal DBS in acquired dystonia, there is a need to explore alternative brain targets. Preliminary evidence has suggested that thalamic stimulation may be efficacious for acquired dystonia.

METHODS

Four participants, 3 with perinatal brain injuries and 1 with postencephalitic symptomatic dystonia, underwent bilateral Vop/Vim DBS and bimonthly evaluations for 12 months. The primary efficacy outcome was the change in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Barry-Albright Dystonia Scale (BADS) scores between the baseline and 12-month assessments. Video documentation was used for blinded ratings. Secondary outcomes included evaluation of spasticity (Modified Ashworth Scale score), quality of life (Pediatric Quality of Life Inventory [PedsQL] and modified Unified Parkinson’s Disease Rating Scale Part II [UPDRS-II] scores), and neuropsychological assessments. Adverse events were monitored for safety.

RESULTS

All participants tolerated the procedure well, and there were no safety concerns or serious adverse events. There was an average improvement of 21.5% in the BFMDRS motor subscale score, but the improvement was only 1.6% according to the BADS score. Following blinded video review, dystonia severity ratings were even more modest. Secondary outcomes, however, were more encouraging, with the BFMDRS disability subscale score improving by 15.7%, the PedsQL total score by 27%, and the modified UPDRS-II score by 19.3%. Neuropsychological assessment findings were unchanged 1 year after surgery.

CONCLUSIONS

Bilateral thalamic neuromodulation by DBS for severe, medication-refractory acquired dystonia was well tolerated. Primary and secondary outcomes showed highly variable treatment effect sizes comparable to those of pallidal stimulation in this population. As previously described, improvements in quality of life and disability were not reflected in dystonia severity scales, suggesting a need for the development of scales specifically for acquired dystonia.

Clinical trial registration no.: NCT03078816 (clinicaltrials.gov)

Restricted access

Katherine Leaver, Aaron Viser, Brian H. Kopell, Roberto A. Ortega, Joan Miravite, Michael S. Okun, Sonya Elango, Deborah Raymond, Susan B. Bressman, Rachel Saunders-Pullman, and Marta San Luciano

OBJECTIVE

The objective of this study was to evaluate clinical features and response to deep brain stimulation (DBS) in G2019S LRRK2-Parkinson disease (LRRK2-PD) and idiopathic PD (IPD).

METHODS

The authors conducted a clinic-based cohort study of PD patients recruited from the Mount Sinai Beth Israel Genetics database of PD studies. The cohort included 87 participants with LRRK2-PD (13 who underwent DBS) and 14 DBS participants with IPD enrolled between 2009 and 2017. The baseline clinical features, including motor ratings and levodopa-equivalent daily dose (LEDD), were compared among LRRK2-PD patients with and without DBS, between LRRK2-PD with DBS and IPD with DBS, and between LRRK2-PD with subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) DBS. Longitudinal motor scores (Unified Parkinson’s Disease Rating Scale–part III) and medication usage were also assessed pre- and postoperatively.

RESULTS

Compared to LRRK2-PD without DBS (n = 74), the LRRK2-PD with DBS cohort (n = 13) had a significantly younger age of onset, longer disease duration, were more likely to have dyskinesia, and were less likely to experience hand tremor at disease onset. LRRK2-PD participants were also more likely to be referred for surgery because of severe dyskinesia (11/13 [85%] vs 6/14 [43%], p = 0.04) and were less likely to be referred for medically refractory tremor (0/13 [0%] vs 6/14 [43%], p = 0.02) than were IPD patients. Among LRRK2-PD patients, both STN-DBS and GPi-DBS targets were effective, although the sample size was small for both groups. There were no revisions or adverse effects reported in the GPi-DBS group, while 2 of the LRRK2-PD participants who underwent STN-DBS required revisions and a third reported depression as a stimulation-related side effect. Medication reduction favored the STN group.

CONCLUSIONS

The LRRK2-PD cohort referred for DBS had a slightly different profile, including earlier age of onset and dyskinesia. Both the STN and GPi DBS targets were effective in symptom suppression. Patients with G2019S LRRK2 PD were well-suited for DBS therapy and had favorable motor outcomes regardless of the DBS target. LRRK2-DBS patients had longer disease durations and tended to have more dyskinesia. Dyskinesia commonly served as the trigger for DBS surgical candidacy. Medication-refractory tremor was not a common indication for surgery in the LRRK2 cohort.