Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Aaron Bernstein x
Clear All Modify Search
Restricted access

Edward F. Chang, Aaron Clark, Randy L. Jensen, Mark Bernstein, Abhijit Guha, Giorgio Carrabba, Debabrata Mukhopadhyay, Won Kim, Linda M. Liau, Susan M. Chang, Justin S. Smith, Mitchel S. Berger and Michael W. McDermott


Medical and surgical management of low-grade gliomas (LGGs) is complicated by a highly variable clinical course. The authors recently developed a preoperative scoring system to prognosticate outcomes of progression and survival in a cohort of patients treated at a single institution (University of California, San Francisco [UCSF]). The objective of this study was to validate the scoring system in a large patient group drawn from multiple external institutions.


Clinical data from 3 outside institutions (University of Utah, Toronto Western Hospital, and University of California, Los Angeles) were collected for 256 patients (external validation set). Patients were assigned a prognostic score based upon the sum of points assigned to the presence of each of the 4 following factors: 1) location of tumor in presumed eloquent cortex, 2) Karnofsky Performance Scale (KPS) Score ≤ 80, 3) age > 50 years, and 4) maximum diameter > 4 cm. A chi-square analysis was used to analyze categorical differences between the institutions; Cox proportional hazard modeling was used to confirm that the individual factors were associated with shorter overall survival (OS) and progression-free survival (PFS); and Kaplan–Meier curves estimated OS and PFS for the score groups. Differences between score groups were analyzed by the log-rank test.


The median OS duration was 120 months, and there was no significant difference in survival between the institutions. Cox proportional hazard modeling confirmed that the 4 components of the UCSF Low-Grade Glioma Scoring System were associated with lower OS in the external validation set; presumed eloquent location (hazard ratio [HR] 2.04, 95% CI 1.28–2.56), KPS score ≤ 80 (HR 5.88, 95% CI 2.44–13.7), age > 50 years (HR 1.82, 95% CI 1.02–3.23), and maximum tumor diameter > 4 cm (HR 2.63, 95% CI 1.58–4.35). The stratification of patients based on scores generated groups (0–4) with statistically different OS and PFS estimates (p < 0.0001, log-rank test). Lastly, the UCSF patient group (construction set) was combined with the external validation set (total of 537 patients) and analyzed for OS and PFS. For all patients, the 5-year survival probability was 0.79; the 5-year cumulative OS probabilities stratified by score group were: score of 0, 0.98; score of 1, 0.90; score of 2, 0.81; score of 3, 0.53; and score of 4, 0.46.


The UCSF scoring system accurately predicted OS and PFS in an external large, multiinstitutional population of patients with LGGs. The strengths of this system include ease of use and ability to be applied preoperatively, with the eventual goal of aiding in the design of individualized treatment plans for patients with LGG at diagnosis.

Restricted access

Aaron Bernstein, Oliver D. Mrowczynski, Amrit Greene, Sandra Ryan, Catherine Chung, Brad E. Zacharia and Michael Glantz


BRAF V600E is a common oncogenic driver in a variety of primary brain tumors. Dual inhibitor therapy using dabrafenib (a selective oral inhibitor of several mutated forms of BRAF kinase) and trametinib (a reversible inhibitor of MEK1 and MEK2) has been used successfully for treatment of metastatic melanoma, anaplastic thyroid cancer, and other tumor types, but has been reported in only a few patients with primary brain tumors and none with pleomorphic xanthoastrocytoma. Here, the authors report on the substantial clinical response and reduction in cutaneous toxicity in a case series of BRAF V600E primary brain cancers treated with dual BRAF/MEK inhibitor therapy.


The authors treated 4 BRAF V600E patients, each with a different type of primary brain tumor (pilocytic astrocytoma, papillary craniopharyngioma, ganglioglioma, and pleomorphic xanthoastrocytoma) with the combination of dabrafenib and trametinib.


The patients with pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and papillary craniopharyngioma experienced near-complete radiographic and complete clinical responses after 8 weeks of therapy. A substantial partial response (by RANO [Response Assessment in Neuro-Oncology] criteria) was observed in the patient with ganglioglioma. The patient with craniopharyngioma developed dramatic, diffuse verrucal keratosis within 2 weeks of starting dabrafenib. This completely resolved within 2 weeks of adding trametinib.


Dual BRAF/MEK inhibitor therapy represents an exciting treatment option for patients with BRAF V600E primary brain tumors. In addition to greater efficacy than single-agent dabrafenib, this combination has the potential to mitigate cutaneous toxicity, one of the most common and concerning BRAF inhibitor–related adverse events.