Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: A-Li Yang x
Clear All Modify Search
Restricted access

Hua-Jun Zhou, Tao Tang, Han-Jin Cui, A-Li Yang, Jie-Kun Luo, Yuan Lin, Qi-Dong Yang and Xing-Qun Li

Object

Angiogenesis occurs after intracerebral hemorrhage (ICH). Thrombin mediates mitogenesis and survival in endothelial cells and induces angiogenesis. The present study aimed to clarify whether thrombin is involved in triggering ICH-related angiogenesis.

Methods

In the first part of the experiment, autologous blood (with or without hirudin) was injected to induce ICH. In the second part, rats received either 1 U (50 μl) thrombin or 50 μl 0.9% sterile saline. In both parts, 5-bromo-2-deoxyuridine (BrdU) was administered intraperitoneally. Brains were perfused to identify BrdU-positive/von Willebrand factor (vWF)–positive nuclei. The expression of hypoxia-inducible factor–1α (HIF-1α), vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1) and Ang-2 was evaluated by immunohistochemistry and quantitative real-time reverse transcription polymerase chain reaction.

Results

After ICH, the number of BrdU-/vWF-positive nuclei increased until Day 14, and vessels positive for HIF-1α, VEGF, Ang-1, and Ang-2 were observed around the clot. Quantitative analysis showed that ICH upregulated expression of HIF-1α, VEGF, Ang-1, and Ang-2 notably compared with that in sham controls (p < 0.05). However, hirudin significantly inhibited these effects. After thrombin treatment, many BrdU-positive/vWF-positive nuclei and HIF-1α–, VEGF-, Ang-1– and Ang-2–positive vessels could be detected around the affected region.

Conclusions

Thrombin can induce angiogenesis in rat brains and may be an important trigger for ICH-related angiogenesis.

Free access

Benjamin C. Kennedy, Michael M. McDowell, Peter H. Yang, Caroline M. Wilson, Sida Li, Todd C. Hankinson, Neil A. Feldstein and Richard C. E. Anderson

Object

Pediatric patients with sickle cell anemia (SCA) carry a significant risk of developing moyamoya syndrome (MMS) and brain ischemia. The authors sought to review the safety and efficacy of pial synangiosis in the treatment of MMS in children with SCA by performing a comprehensive review of all previously reported cases in the literature.

Methods

The authors retrospectively reviewed the clinical and radiographic records in 17 pediatric patients with SCA treated at the Morgan Stanley Children's Hospital of New York (MSCHONY) who developed radiological evidence of MMS and underwent pial synangiosis between 1996 and 2012. The authors then added any additional reported cases of pial synangiosis for this population in the literature for a combined analysis of clinical and radiographic outcomes.

Results

The combined data consisted of 48 pial synangiosis procedures performed in 30 patients. Of these, 27 patients (90%) presented with seizure, stroke, or transient ischemic attack, whereas 3 (10%) were referred after transcranial Doppler screening. At the time of surgery, the median age was 12 years. Thirteen patients (43%) suffered an ischemic stroke while on chronic transfusion therapy. Long-term follow-up imaging (MR angiography or catheter angiography) at a mean of 25 months postoperatively was available in 39 (81%) treated hemispheres. In 34 (87%) of those hemispheres there were demonstrable collateral vessels on imaging. There were 4 neurological events in 1590 cumulative months of follow-up, or 1 event per 33 patient-years. In the patients in whom complete data were available (MSCHONY series, n = 17), the postoperative stroke rate was reduced more than 6-fold from the preoperative rate (p = 0.0003).

Conclusions

Pial synangiosis in patients with SCA, MMS, and brain ischemia appears to be a safe and effective treatment option. Transcranial Doppler and/or MRI screening in asymptomatic patients with SCA is recommended for the diagnosis of MMS.

Restricted access

Jian-Hua Zhong, Hua-Jun Zhou, Tao Tang, Han-Jin Cui, A-Li Yang, Qi-Mei Zhang, Jing-Hua Zhou, Qiang Zhang, Xun Gong, Zhao-Hui Zhang and Zhi-Gang Mei

OBJECTIVE

Reactive astrogliosis, a key feature that is characterized by glial proliferation, has been observed in rat brains after intracerebral hemorrhage (ICH). However, the mechanisms that control reactive astrogliosis formation remain unknown. Notch-1 signaling plays a critical role in modulating reactive astrogliosis. The purpose of this paper was to establish whether Notch-1 signaling is involved in reactive astrogliosis after ICH.

METHODS

ICH was induced in adult male Sprague-Dawley rats via stereotactic injection of autologous blood into the right globus pallidus. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) was injected into the lateral ventricle to block Notch-1 signaling. The rats’ brains were perfused to identify proliferating cell nuclear antigen (PCNA)-positive/GFAP-positive nuclei. The expression of GFAP, Notch-1, and the activated form of Notch-1 (Notch intracellular domain [NICD]) and its ligand Jagged-1 was assessed using immunohistochemical and Western blot analyses, respectively.

RESULTS

Notch-1 signaling was upregulated and activated after ICH as confirmed by an increase in the expression of Notch-1 and NICD and its ligand Jagged-1. Remarkably, blockade of Notch-1 signaling with the specific inhibitor DAPT suppressed astrocytic proliferation and GFAP levels caused by ICH. In addition, DAPT improved neurological outcome after ICH.

CONCLUSIONS

Notch-1 signaling is a critical regulator of ICH-induced reactive astrogliosis, and its blockage may be a potential therapeutic strategy for hemorrhagic injury.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010