Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Peter Canoll x
Clear All Modify Search
Restricted access

Todd C. Hankinson, Alfred T. Ogden, Peter Canoll, James H. Garvin, Michael Kazim, Jeffrey N. Bruce, Neil A. Feldstein and Richard C. E. Anderson

✓ Soft-tissue glomus tumors (or glomangiomas) are unrelated to neuroendocrine paragangliomas (glomus tympanicum, jugulare, and vagale). The authors present the first reported case of an orbital soft-tissue glomus tumor in a child. An 8-year-old girl developed rapidly progressive right-eye blindness, proptosis, and a sixth cranial nerve palsy. Magnetic resonance imaging demonstrated a homogeneously enhancing lesion extending from the right orbit through the superior orbital fissure to the cavernous sinus and middle cranial fossa. A biopsy specimen demonstrated the lesion to be a soft-tissue glomus tumor. Following angiography and embolization, a gross-total resection of the tumor was achieved. The patient was treated with adjuvant proton-beam radiotherapy. At 24 months follow-up her proptosis and sixth cranial nerve palsy had resolved and there was no evidence of tumor recurrence.

Full access

Timothy H. Ung, Christopher Kellner, Justin A. Neira, Shih-Hsiu J. Wang, Randy D’Amico, Phyllis L. Faust, Peter Canoll, Neil A. Feldstein and Jeffrey N. Bruce

Intravenous administration of fluorescein sodium fluoresces glioma burden tissue and can be visualized using the surgical microscope with a specialized filter. Intraoperative guidance afforded through the use of fluorescein may enhance the fidelity of tissue sampling, and increase the ability to accomplish complete resection of tectal lesions. In this report the authors present the case of a 19-year-old man with a tectal anaplastic pilocytic astrocytoma in which the use of fluorescein sodium and a Zeiss Pentero surgical microscope equipped with a yellow 560 filter enabled safe complete resection. In conjunction with neurosurgical navigation, added intraoperative guidance provided by fluorescein may be beneficial in the resection of brainstem gliomas.

Restricted access

Richard C. E. Anderson, Benjamin Kennedy, Candix L. Yanes, James Garvin, Michael Needle, Peter Canoll, Neil A. Feldstein and Jeffrey N. Bruce

Convection-enhanced delivery (CED) for the treatment of malignant gliomas is a technique that can deliver chemotherapeutic agents directly into the tumor and the surrounding interstitium through sustained, low-grade positive-pressure infusion. This allows for high local concentrations of drug within the tumor while minimizing systemic levels that often lead to dose-limiting toxicity. Diffuse intrinsic pontine gliomas (DIPGs) are universally fatal childhood tumors for which there is currently no effective treatment. In this report the authors describe CED of the topoisomerase inhibitor topotecan for the treatment of DIPG in 2 children.

As part of a pilot feasibility study, the authors treated 2 pediatric patients with DIPG. Stereotactic biopsy with frozen section confirmation of glial tumor was followed by placement of bilateral catheters for CED of topotecan during the same procedure. The first patient underwent CED 210 days after initial diagnosis, after radiation therapy and at the time of tumor recurrence, with a total dose of 0.403 mg in 6.04 ml over 100 hours. Her Karnofsky Performance Status (KPS) score was 60 before CED and 50 posttreatment. Serial MRI initially demonstrated a modest reduction in tumor size and edema, but the tumor progressed and the patient died 49 days after treatment. The second patient was treated 24 days after the initial diagnosis prior to radiation with a total dose of 0.284 mg in 5.30 ml over 100 hours. Her KPS score was 70 before CED and 50 posttreatment. Serial MRI similarly demonstrated an initial modest reduction in tumor size. The patient subsequently underwent fractionated radiation therapy, but the tumor progressed and she died 120 days after treatment.

Topotecan delivered by prolonged CED into the brainstem in children with DIPG is technically feasible. In both patients, high infusion rates (> 0.12 ml/hr) and high infusion volumes (> 2.8 ml) resulted in new neurological deficits and reduction in the KPS score, but lower infusion rates (< 0.04 ml/hr) were well tolerated. While serial MRI showed moderate treatment effect, CED did not prolong survival in these 2 patients. More studies are needed to improve patient selection and determine the optimal flow rates for CED of chemotherapeutic agents into DIPG to maximize safety and efficacy. Clinical trial registration no.: NCT00324844.

Full access

Jason A. Ellis, Robert J. Rothrock, Gaetan Moise, Paul C. McCormick II, Kurenai Tanji, Peter Canoll, Michael G. Kaiser and Paul C. McCormick

Primary spinal primitive neuroectodermal tumors (PNETs) are uncommon malignancies that are increasingly reported in the literature. Spinal PNETs, like their cranial counterparts, are aggressive tumors and patients with these tumors typically have short survival times despite maximal surgery, chemotherapy, and radiation. Because no standard management guidelines exist for treating these tumors, a multitude of therapeutic strategies have been employed with varying success. In this study the authors perform a comprehensive review of the literature on primary spinal PNETs and provide 2 new cases that highlight the salient features of their clinical management.

Restricted access

Randy S. D’Amico, Justin A. Neira, Jonathan Yun, Nikita G. Alexiades, Matei Banu, Zachary K. Englander, Benjamin C. Kennedy, Timothy H. Ung, Robert J. Rothrock, Alexander Romanov, Xiaotao Guo, Binsheng Zhao, Adam M. Sonabend, Peter Canoll and Jeffrey N. Bruce

OBJECTIVE

Intracerebral convection-enhanced delivery (CED) has been limited to short durations due to a reliance on externalized catheters. Preclinical studies investigating topotecan (TPT) CED for glioma have suggested that prolonged infusion improves survival. Internalized pump-catheter systems may facilitate chronic infusion. The authors describe the safety and utility of long-term TPT CED in a porcine model and correlation of drug distribution through coinfusion of gadolinium.

METHODS

Fully internalized CED pump-catheter systems were implanted in 12 pigs. Infusion algorithms featuring variable infusion schedules, flow rates, and concentrations of a mixture of TPT and gadolinium were characterized over increasing intervals from 4 to 32 days. Therapy distribution was measured using gadolinium signal on MRI as a surrogate. A 9-point neurobehavioral scale (NBS) was used to identify side effects.

RESULTS

All animals tolerated infusion without serious adverse events. The average NBS score was 8.99. The average maximum volume of distribution (Vdmax) in chronically infused animals was 11.30 mL and represented 32.73% of the ipsilateral cerebral hemispheric volume. Vdmax was achieved early during infusions and remained relatively stable despite a slight decline as the infusion reached steady state. Novel tissue TPT concentrations measured by liquid chromatography mass spectroscopy correlated with gadolinium signal intensity on MRI (p = 0.0078).

CONCLUSIONS

Prolonged TPT-gadolinium CED via an internalized system is safe and well tolerated and can achieve a large Vdmax, as well as maintain a stable Vd for up to 32 days. Gadolinium provides an identifiable surrogate for measuring drug distribution. Extended CED is potentially a broadly applicable and safe therapeutic option in select patients.

Free access

Justin A. Neira, Timothy H. Ung, Jennifer S. Sims, Hani R. Malone, Daniel S. Chow, Jorge L. Samanamud, George J. Zanazzi, Xiaotao Guo, Stephen G. Bowden, Binsheng Zhao, Sameer A. Sheth, Guy M. McKhann II, Michael B. Sisti, Peter Canoll, Randy S. D'Amico and Jeffrey N. Bruce

OBJECTIVE

Extent of resection is an important prognostic factor in patients undergoing surgery for glioblastoma (GBM). Recent evidence suggests that intravenously administered fluorescein sodium associates with tumor tissue, facilitating safe maximal resection of GBM. In this study, the authors evaluate the safety and utility of intraoperative fluorescein guidance for the prediction of histopathological alteration both in the contrast-enhancing (CE) regions, where this relationship has been established, and into the non-CE (NCE), diffusely infiltrated margins.

METHODS

Thirty-two patients received fluorescein sodium (3 mg/kg) intravenously prior to resection. Fluorescence was intraoperatively visualized using a Zeiss Pentero surgical microscope equipped with a YELLOW 560 filter. Stereotactically localized biopsy specimens were acquired from CE and NCE regions based on preoperative MRI in conjunction with neuronavigation. The fluorescence intensity of these specimens was subjectively classified in real time with subsequent quantitative image analysis, histopathological evaluation of localized biopsy specimens, and radiological volumetric assessment of the extent of resection.

RESULTS

Bright fluorescence was observed in all GBMs and localized to the CE regions and portions of the NCE margins of the tumors, thus serving as a visual guide during resection. Gross-total resection (GTR) was achieved in 84% of the patients with an average resected volume of 95%, and this rate was higher among patients for whom GTR was the surgical goal (GTR achieved in 93.1% of patients, average resected volume of 99.7%). Intraoperative fluorescein staining correlated with histopathological alteration in both CE and NCE regions, with positive predictive values by subjective fluorescence evaluation greater than 96% in NCE regions.

CONCLUSIONS

Intraoperative administration of fluorescein provides an easily visualized marker for glioma pathology in both CE and NCE regions of GBM. These findings support the use of fluorescein as a microsurgical adjunct for guiding GBM resection to facilitate safe maximal removal.