Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Neil A. Phillips x
  • Journal of Neurosurgery: Spine x
Clear All Modify Search
Full access

Nestor G. Rodriguez-Martinez, Amey Savardekar, Eric W. Nottmeier, Stephen Pirris, Phillip M. Reyes, Anna G. U. S. Newcomb, George A. C. Mendes, Samuel Kalb, Nicholas Theodore and Neil R. Crawford

OBJECTIVE

Transvertebral screws provide stability in thoracic spinal fixation surgeries, with their use mainly limited to patients who require a pedicle screw salvage technique. However, the biomechanical impact of transvertebral screws alone, when they are inserted across 2 vertebral bodies, has not been studied. In this study, the authors assessed the stability offered by a transvertebral screw construct for posterior instrumentation and compared its biomechanical performance to that of standard bilateral pedicle screw and rod (PSR) fixation.

METHODS

Fourteen fresh human cadaveric thoracic spine segments from T-6 to T-11 were divided into 2 groups with similar ages and bone quality. Group 1 received transvertebral screws across 2 levels without rods and subsequently with interconnecting bilateral rods at 3 levels (T8–10). Group 2 received bilateral PSR fixation and were sequentially tested with interconnecting rods at T7–8 and T9–10, at T8–9, and at T8–10. Flexibility tests were performed on intact and instrumented specimens in both groups. Presurgical and postsurgical O-arm 3D images were obtained to verify screw placement.

RESULTS

The mean range of motion (ROM) per motion segment with transvertebral screws spanning 2 levels compared with the intact condition was 66% of the mean intact ROM during flexion-extension (p = 0.013), 69% during lateral bending (p = 0.015), and 47% during axial rotation (p < 0.001). The mean ROM per motion segment with PSR spanning 2 levels compared with the intact condition was 38% of the mean intact ROM during flexion-extension (p < 0.001), 57% during lateral bending (p = 0.007), and 27% during axial rotation (p < 0.001). Adding bilateral rods to the 3 levels with transvertebral screws decreased the mean ROM per motion segment to 28% of intact ROM during flexion-extension (p < 0.001), 37% during lateral bending (p < 0.001), and 30% during axial rotation (p < 0.001). The mean ROM per motion segment for PSR spanning 3 levels was 21% of intact ROM during flexion-extension (p < 0.001), 33% during lateral bending (p < 0.001), and 22% during axial rotation (p < 0.001).

CONCLUSIONS

Biomechanically, fixation with a novel technique in the thoracic spine involving transvertebral screws showed restoration of stability to well within the stability provided by PSR fixation.

Restricted access

Ali A. Baaj, Phillip M. Reyes, Ali S. Yaqoobi, Juan S. Uribe, Fernando L. Vale, Nicholas Theodore, Volker K. H. Sonntag and Neil R. Crawford

Object

Unstable fractures at the thoracolumbar junction often require extended, posterior, segmental pedicular fixation. Some surgeons have reported good clinical outcomes with short-segment constructs if additional pedicle screws are inserted at the fractured level. The goal of this study was to quantify the biomechanical advantage of the index-level screw in a fracture model.

Methods

Six human cadaveric T10–L4 specimens were tested. A 3-column injury at L-1 was simulated, and 4 posterior constructs were tested as follows: one-above-one-below (short construct) with/without index-level screws, and two-above-two-below (long construct) with/without index-level screws. Pure moments were applied quasistatically while 3D motion was measured optoelectronically. The range of motion (ROM) and lax zone across T12–L2 were measured during flexion, extension, left and right lateral bending, and left and right axial rotation.

Results

All constructs significantly reduced the ROM and lax zone in the fractured specimens. With or without index-level screws, the long-segment constructs provided better immobilization than the short-segment constructs during all loading modes. Adding an index-level screw to the short-segment construct significantly improved stability during flexion and lateral bending; there was no significant improvement in stability when an index-level screw was added to the long-segment construct. Overall, bilateral index-level screws decreased the ROM of the 1-level construct by 25% but decreased the ROM of the 2-level construct by only 3%.

Conclusions

In a fracture model, adding index-level pedicle screws to short-segment constructs improves stability, although stability remains less than that provided by long-segment constructs with or without index-level pedicle screws. Therefore, highly unstable fractures likely require extended, long-segment constructs for optimum stability.

Restricted access

Dean G. Karahalios, Taro Kaibara, Randall W. Porter, Udaya K. Kakarla, Phillip M. Reyes, Ali A. Baaj, Ali S. Yaqoobi and Neil R. Crawford

Object

An interspinous anchor (ISA) provides fixation to the lumbar spine to facilitate fusion. The biomechanical stability provided by the Aspen ISA was studied in applications utilizing an anterior lumbar interbody fusion (ALIF) construct.

Methods

Seven human cadaveric L3–S1 specimens were tested in the following states: 1) intact; 2) after placing an ISA at L4–5; 3) after ALIF with an ISA; 4) after ALIF with an ISA and anterior screw/plate fixation system; 5) after removing the ISA (ALIF with plate only); 6) after removing the plate (ALIF only); and 7) after applying bilateral pedicle screws and rods. Pure moments (7.5 Nm maximum) were applied in flexion and extension, lateral bending, and axial rotation while recording angular motion optoelectronically. Changes in angulation as well as foraminal height were also measured.

Results

All instrumentation variances except ALIF alone reduced angular range of motion (ROM) significantly from normal in all directions of loading. The ISA was most effective in limiting flexion and extension (25% of normal) and less effective in reducing lateral bending (71% of normal) and axial rotation (71% of normal). Overall, ALIF with an ISA provided stability that was statistically equivalent to ALIF with bilateral pedicle screws and rods. An ISA-augmented ALIF allowed less ROM than plate-augmented ALIF during flexion, extension, and lateral bending. Use of the ISA resulted in flexion at the index level, with a resultant increase in foraminal height. Compensatory extension at the adjacent levels prevented any significant change in overall sagittal balance.

Conclusions

When used with ALIF at L4–5, the ISA provides immediate rigid immobilization of the lumbar spine, allowing equivalent ROM to that of a pedicle screw/rod system, and smaller ROM than an anterior plate. When used with ALIF, the ISA may offer an alternative to anterior plate fixation or bilateral pedicle screw/rod constructs.

Full access

Rachel Sarabia-Estrada, Alejandro Ruiz-Valls, Sagar R. Shah, A. Karim Ahmed, Alvaro A. Ordonez, Fausto J. Rodriguez, Hugo Guerrero-Cazares, Ismael Jimenez-Estrada, Esteban Velarde, Betty Tyler, Yuxin Li, Neil A. Phillips, C. Rory Goodwin, Rory J. Petteys, Sanjay K. Jain, Gary L. Gallia, Ziya L. Gokaslan, Alfredo Quinones-Hinojosa and Daniel M. Sciubba

OBJECTIVE

Chordoma is a slow-growing, locally aggressive cancer that is minimally responsive to conventional chemotherapy and radiotherapy and has high local recurrence rates after resection. Currently, there are no rodent models of spinal chordoma. In the present study, the authors sought to develop and characterize an orthotopic model of human chordoma in an immunocompromised rat.

METHODS

Thirty-four immunocompromised rats were randomly allocated to 4 study groups; 22 of the 34 rats were engrafted in the lumbar spine with human chordoma. The groups were as follows: UCH1 tumor–engrafted (n = 11), JHC7 tumor–engrafted (n = 11), sham surgery (n = 6), and intact control (n = 6) rats. Neurological impairment of rats due to tumor growth was evaluated using open field and locomotion gait analysis; pain response was evaluated using mechanical or thermal paw stimulation. Cone beam CT (CBCT), MRI, and nanoScan PET/CT were performed to evaluate bony changes due to tumor growth. On Day 550, rats were killed and spines were processed for H & E–based histological examination and immunohistochemistry for brachyury, S100β, and cytokeratin.

RESULTS

The spine tumors displayed typical chordoma morphology, that is, physaliferous cells filled with vacuolated cytoplasm of mucoid matrix. Brachyury immunoreactivity was confirmed by immunostaining, in which samples from tumor-engrafted rats showed a strong nuclear signal. Sclerotic lesions in the vertebral body of rats in the UCH1 and JHC7 groups were observed on CBCT. Tumor growth was confirmed using contrast-enhanced MRI. In UCH1 rats, large tumors were observed growing from the vertebral body. JHC7 chordoma–engrafted rats showed smaller tumors confined to the bone periphery compared with UCH1 chordoma–engrafted rats. Locomotion analysis showed a disruption in the normal gait pattern, with an increase in the step length and duration of the gait in tumor-engrafted rats. The distance traveled and the speed of rats in the open field test was significantly reduced in the UCH1 and JHC7 tumor–engrafted rats compared with controls. Nociceptive response to a mechanical stimulus showed a significant (p < 0.001) increase in the paw withdrawal threshold (mechanical hypalgesia). In contrast, the paw withdrawal response to a thermal stimulus decreased significantly (p < 0.05) in tumor-engrafted rats.

CONCLUSIONS

The authors developed an orthotopic human chordoma model in rats. Rats were followed for 550 days using imaging techniques, including MRI, CBCT, and nanoScan PET/CT, to evaluate lesion progression and bony integrity. Nociceptive evaluations and locomotion analysis were performed during follow-up. This model reproduces cardinal signs, such as locomotor and sensory deficits, similar to those observed clinically in human patients. To the authors’ knowledge, this is the first spine rodent model of human chordoma. Its use and further study will be essential for pathophysiology research and the development of new therapeutic strategies.