Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Michael Y. Oh x
  • Neurosurgical Focus x
Clear All Modify Search
Free access

Alexander C. Whiting, Michael Y. Oh and Donald M. Whiting

The mechanisms of appetite disorders, such as refractory obesity and anorexia nervosa, have been vigorously studied over the last century, and these studies have shown that the central nervous system has significant involvement with, and responsibility for, the pathology associated with these diseases. Because deep brain stimulation has been shown to be a safe, efficacious, and adjustable treatment modality for a variety of other neurological disorders, it has also been studied as a possible treatment for appetite disorders. In studies of refractory obesity in animal models, the ventromedial hypothalamus, the lateral hypothalamus, and the nucleus accumbens have all demonstrated elements of success as deep brain stimulation targets. Multiple targets for deep brain stimulation have been proposed for anorexia nervosa, with research predominantly focusing on the subcallosal cingulate, the nucleus accumbens, and the stria terminalis and medial forebrain bundle. Human deep brain stimulation studies that focus specifically on refractory obesity and anorexia nervosa have been performed but with limited numbers of patients. In these studies, the target for refractory obesity has been the lateral hypothalamus, ventromedial hypothalamus, and nucleus accumbens, and the target for anorexia nervosa has been the subcallosal cingulate. These studies have shown promising findings, but further research is needed to elucidate the long-term efficacy of deep brain stimulation for the treatment of appetite disorders.

Free access

Derrick A. Dupré, Nestor Tomycz, Michael Y. OH and Donald Whiting

The authors review the history of deep brain stimulation (DBS) in patients for treating obesity, describe current DBS targets in the brain, and discuss potential DBS targets and nontraditional stimulation parameters that may improve the effectiveness of DBS for ameliorating obesity. Deep brain stimulation for treating obesity has been performed both in animals and in humans with intriguing preliminary results. The brain is an attractive target for addressing obesity because modulating brain activity may permit influencing both sides of the energy equation—caloric intake and energy expenditure.

Full access

Alexander A. Khalessi, Bryan C. Oh and Michael Y. Wang

✓ In the following literature review the authors consider the available evidence for the medical management of patients with ankylosing spondylitis (AS), and they critically assess current treatment guidelines. Medical therapy for axial disease in AS emphasizes improvement in patients' pain and overall function. First-line treatments include individualized physical therapy and nonsteroidal antiinflammatory drugs (NSAIDs) in conjunction with gastroprotective therapy. After an adequate trial of therapy with two NSAIDs exceeding 3 months or limited by medication toxicity, the patient may undergo tumor necrosis factor–α blockade therapy. Response should occur within 6–12 weeks, and patients must undergo tuberculosis screening. Evidence does not currently support the use of disease modifying antirheumatic drugs, corticosteroids, or radiotherapy in AS.

Full access

Dunbar Alcindor, Michael Y. Oh, Susan Baser, Cindy Angle, Boyle C. Cheng and Donald Whiting

The authors report the case of DYT1-positive primary generalized dystonia refractory to medical management that was successfully treated with continuous deep brain stimulation of the internal segment of the globus pallidus. Prior studies have shown that neuromusculoskeletal deficits can remain permanent if early surgical intervention is not undertaken. The authors report prolonged efficacy and safety over a 10-year period in a 28-year-old man.