Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Marjolein H. G. Dremmen x
Clear All Modify Search
Restricted access

Robbin de Goederen, Iris E. Cuperus, Robert C. Tasker, Bianca K. den Ottelander, Marjolein H. G. Dremmen, Marie-Lise C. van Veelen, Jochem K. H. Spoor, Koen F. M. Joosten and Irene M. J. Mathijssen

OBJECTIVE

Intracranial hypertension is a major concern in children with syndromic craniosynostosis (sCS). Cerebral venous hypertension caused by cerebral venous outflow obstruction is believed to contribute to intracranial hypertension. The authors therefore hypothesized that cerebral venous volume would be increased in those children with sCS and intracranial hypertension.

METHODS

In a case series of 105 children with sCS, of whom 32 had intracranial hypertension, cerebral MRI techniques were used to quantify the volume of the superior sagittal sinus, straight sinus (StrS), and both transverse sinuses.

RESULTS

Linear regression showed that total cerebral venous volume increased by 580.8 mm3 per cm increase in occipitofrontal head circumference (p < 0.001). No significant difference was found between the intracranial hypertension group and the nonintracranial hypertension group (p = 0.470). Multivariate ANOVA showed increased StrS volume (as a proportion of total volume) in the intracranial hypertension group (8.5% vs 5.1% in the nonintracranial hypertension group, p < 0.001). Multivariate logistic regression showed that a 100-mm3 increase in StrS volume is associated with increased odds of having intracranial hypertension by 60% (OR 1.60, 95% CI 1.24–2.08).

CONCLUSIONS

Although intracranial hypertension was not associated with total cerebral venous volume increase, it was associated with an isolated increase in StrS volume. Hence, it is unlikely that general cerebral venous outflow obstruction is the mechanism of intracranial hypertension in sCS. Rather, these findings indicate either a central cerebral vulnerability to intracranial hypertension or a mechanism involving venous blood redistribution.

Restricted access

Priya N. Doerga, Maarten H. Lequin, Marjolein H. G. Dremmen, Bianca K. den Ottelander, Katya A. L. Mauff, Matthias W. Wagner, Juan A. Hernandez-Tamames, Sarah L. Versnel, Koen F. M. Joosten, Marie-Lise C. van Veelen, Robert C. Tasker and Irene M. J. Mathijssen

OBJECTIVE

In comparison with the general population, children with syndromic craniosynostosis (sCS) have abnormal cerebral venous anatomy and are more likely to develop intracranial hypertension. To date, little is known about the postnatal development change in cerebral blood flow (CBF) in sCS. The aim of this study was to determine CBF in patients with sCS, and compare findings with control subjects.

METHODS

A prospective cohort study of patients with sCS using MRI and arterial spin labeling (ASL) determined regional CBF patterns in comparison with a convenience sample of control subjects with identical MRI/ASL assessments in whom the imaging showed no cerebral/neurological pathology. Patients with SCS and control subjects were stratified into four age categories and compared using CBF measurements from four brain lobes, the cerebellum, supratentorial cortex, and white matter. In a subgroup of patients with sCS the authors also compared longitudinal pre- to postoperative CBF changes.

RESULTS

Seventy-six patients with sCS (35 female [46.1%] and 41 male [53.9%]), with a mean age of 4.5 years (range 0.2–19.2 years), were compared with 86 control subjects (38 female [44.2%] and 48 male [55.8%]), with a mean age of 6.4 years (range 0.1–17.8 years). Untreated sCS patients < 1 year old had lower CBF than control subjects. In older age categories, CBF normalized to values observed in controls. Graphical analyses of CBF by age showed that the normally expected peak in CBF during childhood, noted at 4 years of age in control subjects, occurred at 5–6 years of age in patients with sCS. Patients with longitudinal pre- to postoperative CBF measurements showed significant increases in CBF after surgery.

CONCLUSIONS

Untreated patients with sCS < 1 year old have lower CBF than control subjects. Following vault expansion, and with age, CBF in these patients normalizes to that of control subjects, but the usual physiological peak in CBF in childhood occurs later than expected.

Restricted access

Priya N. Doerga, Maarten H. Lequin, Marjolein H. G. Dremmen, Bianca K. den Ottelander, Katya A. L. Mauff, Matthias W. Wagner, Juan A. Hernandez-Tamames, Sarah L. Versnel, Koen F. M. Joosten, Marie-Lise C. van Veelen, Robert C. Tasker and Irene M. J. Mathijssen

OBJECTIVE

In comparison with the general population, children with syndromic craniosynostosis (sCS) have abnormal cerebral venous anatomy and are more likely to develop intracranial hypertension. To date, little is known about the postnatal development change in cerebral blood flow (CBF) in sCS. The aim of this study was to determine CBF in patients with sCS, and compare findings with control subjects.

METHODS

A prospective cohort study of patients with sCS using MRI and arterial spin labeling (ASL) determined regional CBF patterns in comparison with a convenience sample of control subjects with identical MRI/ASL assessments in whom the imaging showed no cerebral/neurological pathology. Patients with SCS and control subjects were stratified into four age categories and compared using CBF measurements from four brain lobes, the cerebellum, supratentorial cortex, and white matter. In a subgroup of patients with sCS the authors also compared longitudinal pre- to postoperative CBF changes.

RESULTS

Seventy-six patients with sCS (35 female [46.1%] and 41 male [53.9%]), with a mean age of 4.5 years (range 0.2–19.2 years), were compared with 86 control subjects (38 female [44.2%] and 48 male [55.8%]), with a mean age of 6.4 years (range 0.1–17.8 years). Untreated sCS patients < 1 year old had lower CBF than control subjects. In older age categories, CBF normalized to values observed in controls. Graphical analyses of CBF by age showed that the normally expected peak in CBF during childhood, noted at 4 years of age in control subjects, occurred at 5–6 years of age in patients with sCS. Patients with longitudinal pre- to postoperative CBF measurements showed significant increases in CBF after surgery.

CONCLUSIONS

Untreated patients with sCS < 1 year old have lower CBF than control subjects. Following vault expansion, and with age, CBF in these patients normalizes to that of control subjects, but the usual physiological peak in CBF in childhood occurs later than expected.

Restricted access

Bianca K. den Ottelander, Robbin de Goederen, Marie-Lise C. van Veelen, Stephanie D. C. van de Beeten, Maarten H. Lequin, Marjolein H. G. Dremmen, Sjoukje E. Loudon, Marieke A. J. Telleman, Henriëtte H. W. de Gier, Eppo B. Wolvius, Stephen T. H. Tjoa, Sarah L. Versnel, Koen F. M. Joosten and Irene M. J. Mathijssen

OBJECTIVE

The authors evaluated the long-term outcome of their treatment protocol for Muenke syndrome, which includes a single craniofacial procedure.

METHODS

This was a prospective observational cohort study of Muenke syndrome patients who underwent surgery for craniosynostosis within the first year of life. Symptoms and determinants of intracranial hypertension were evaluated by longitudinal monitoring of the presence of papilledema (fundoscopy), obstructive sleep apnea (OSA; with polysomnography), cerebellar tonsillar herniation (MRI studies), ventricular size (MRI and CT studies), and skull growth (occipital frontal head circumference [OFC]). Other evaluated factors included hearing, speech, and ophthalmological outcomes.

RESULTS

The study included 38 patients; 36 patients underwent fronto-supraorbital advancement. The median age at last follow-up was 13.2 years (range 1.3–24.4 years). Three patients had papilledema, which was related to ophthalmological disorders in 2 patients. Three patients had mild OSA. Three patients had a Chiari I malformation, and tonsillar descent < 5 mm was present in 6 patients. Tonsillar position was unrelated to papilledema, ventricular size, or restricted skull growth. Ten patients had ventriculomegaly, and the OFC growth curve deflected in 3 patients. Twenty-two patients had hearing loss. Refraction anomalies were diagnosed in 14/15 patients measured at ≥ 8 years of age.

CONCLUSIONS

Patients with Muenke syndrome treated with a single fronto-supraorbital advancement in their first year of life rarely develop signs of intracranial hypertension, in accordance with the very low prevalence of its causative factors (OSA, hydrocephalus, and restricted skull growth). This illustrates that there is no need for a routine second craniofacial procedure. Patient follow-up should focus on visual assessment and speech and hearing outcomes.