Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Geoffrey T. Manley x
  • Neurosurgical Focus x
Clear All Modify Search
Full access

Geoffrey T. Manley

Elevated intracranial pressure is one of the most common causes of death and disability following severe traumatic brain injury and ischemic stroke. Unfortunately, there have been no new medical treatments for cerebral edema and elevated intracranial pressure in more than 80 years. Decompressive craniectomy may be an appropriate surgical option in the face of elevated intracranial pressure that is refractory to medical treatment. When performed correctly, this procedure can reduce intracranial pressure and prevent cerebral herniation and death. The last decade has seen a renewed interest in the use of decompressive craniectomy, but many questions remain regarding patient selection, timing of surgery, surgical technique, timing of cranioplasty, and complications.

Full access

Shirley I. Stiver and Geoffrey T. Manley

The aim of this study was to review the current protocols of prehospital practice and their impact on outcome in the management of traumatic brain injury. A literature review of the National Library of Medicine encompassing the years 1980 to May 2008 was performed. The primary impact of a head injury sets in motion a cascade of secondary events that can worsen neurological injury and outcome. The goals of care during prehospital triage, stabilization, and transport are to recognize life-threatening raised intracranial pressure and to circumvent cerebral herniation. In that process, prevention of secondary injury and secondary insults is a major determinant of both short- and longterm outcome. Management of brain oxygenation, blood pressure, cerebral perfusion pressure, and raised intracranial pressure in the prehospital setting are discussed. Patient outcomes are dependent upon an organized trauma response system. Dispatch and transport timing, field stabilization, modes of transport, and destination levels of care are addressed. In addition, special considerations for mass casualty and disaster planning are outlined and recommendations are made regarding early response efforts and the ethical impact of aggressive prehospital resuscitation. The most sophisticated of emergency, operative, or intensive care units cannot reverse damage that has been set in motion by suboptimal protocols of triage and resuscitation, either at the injury scene or en route to the hospital. The quality of prehospital care is a major determinant of long-term outcome for patients with traumatic brain injury.

Full access

Orin Bloch and Geoffrey T. Manley

✓Despite decades of research into the pathogenesis of cerebral edema, nonsurgical therapy for brain swelling has advanced very little after more than half a century. Recent advancements in our understanding of molecular water transport have generated interest in new targets for edema therapy. Aquaporin-4 (AQP4) is the primary cellular water channel in the brain, localized to astrocytic foot processes along the blood–brain barrier and brain–cerebrospinal fluid interface. Multiple studies of transgenic mice with a complete deficiency or altered expression of AQP4 suggest a prominent role for AQP4 in cerebral water transport. In models of cellular (cytotoxic) edema, AQP4 deletion or alteration has been shown to be protective, reducing edema burden and improving overall survival. In contrast, AQP4 deletion in extra-cellular (vasogenic) edema results in decreased edema clearance and greater progression of disease. The data strongly support the conclusion that AQP4 plays a pivotal role in cerebral water transport and is an essential mediator in the formation and resorption of edema fluid from the brain parenchyma. These findings also suggest that drug therapy targeting AQP4 function and expression may dramatically alter our ability to treat cerebral edema.

Full access

Pregnancy-related vertebral hemangioma

Case report, review of the literature, and management algorithm

John H. Chi, Geoffrey T. Manley and Dean Chou

Pregnancy is a recognized risk factor for quiescent vertebral hemangiomas becoming symptomatic; this usually occurs during the 3rd month of gestation. The natural history of these lesions is poorly understood, and treatment practices must consider the overall safety of the mother and fetus. The authors report a case of cervical vertebral hemangioma presenting during the 24th week of pregnancy and review the current literature.

A 26-year-old woman in her 24th week of pregnancy presented with upper-back pain and progressive spastic paresis in the legs. Neuroimaging studies revealed a diffuse C-7 vertebral body lesion with extradural extension and compression of the spinal cord consistent with a vertebral hemangioma. Successful decompression was accomplished, and the fetus experienced no adverse effects from the surgery.

In a review of the literature, 23 cases of pregnancy-related vertebral hemangioma dating back to 1927 were identified. Prepartum surgical decompression was performed in eight patients, postpartum surgery was performed in 12, and surgery was not performed in four. Overall, patients experienced excellent neurological recovery, regardless of the severity and duration of spastic paresis.

Observation should be considered for symptomatic patients at greater than 32 weeks gestation. Surgery should be considered for patients with severe neurological deficits at less than 32 weeks of gestation.

Free access

Ethan A. Winkler, John K. Yue, Harjus Birk, Caitlin K. Robinson, Geoffrey T. Manley, Sanjay S. Dhall and Phiroz E. Tarapore

OBJECT

Traumatic fractures of the thoracolumbar spine are common injuries, accounting for approximately 90% of all spinal trauma. Lumbar spine trauma in the elderly is a growing public health problem with relatively little evidence to guide clinical management. The authors sought to characterize the complications, morbidity, and mortality associated with surgical and nonsurgical management in elderly patients with traumatic fractures of the lumbar spine.

METHODS

Using the National Sample Program of the National Trauma Data Bank, the authors performed a retrospective analysis of patients ≥ 55 years of age who had traumatic fracture to the lumbar spine. This group was divided into middle-aged (55–69 years) and elderly (≥ 70 years) cohorts. Cohorts were subdivided into nonoperative, vertebroplasty or kyphoplasty, noninstrumented surgery, and instrumented surgery. Univariate and multivariable analyses were used to characterize and identify predictors of medical and surgical complications, mortality, hospital length of stay, ICU length of stay, number of days on ventilator, and hospital discharge in each subgroup. Adjusted odds ratios, mean differences, and associated 95% CIs were reported. Statistical significance was assessed at p < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis.

RESULTS

Between 2003 and 2012, 22,835 people met the inclusion criteria, which represents 94,103 incidents nationally. Analyses revealed a similar medical and surgical complication profile between age groups. The most prevalent medical complications were pneumonia (7.0%), acute respiratory distress syndrome (3.6%), and deep venous thrombosis (3%). Surgical site infections occurred in 6.3% of cases. Instrumented surgery was associated with the highest odds of each complication (p < 0.001). The inpatient mortality rate was 6.8% for all subjects. Multivariable analyses demonstrated that age ≥ 70 years was an independent predictor of mortality (OR 3.16, 95% CI 2.77–3.60), whereas instrumented surgery (multivariable OR 0.38, 95% CI 0.28–0.52) and vertebroplasty or kyphoplasty (OR 0.27, 95% CI 0.17–0.45) were associated with decreased odds of death. In surviving patients, both older age (OR 0.32, 95% CI 0.30–0.34) and instrumented fusion (OR 0.37, 95% CI 0.33–0.41) were associated with decreased odds of discharge to home.

CONCLUSIONS

The present study confirms that lumbar surgery in the elderly is associated with increased morbidity. In particular, instrumented fusion is associated with periprocedural complications, prolonged hospitalization, and a decreased likelihood of being discharged home. However, fusion surgery is also associated with reduced mortality. Age alone should not be an exclusionary factor in identifying surgical candidates for instrumented lumbar spinal fusion. Future studies are needed to confirm these findings.

Free access

John K. Yue, Ethan A. Winkler, John F. Burke, Andrew K. Chan, Sanjay S. Dhall, Mitchel S. Berger, Geoffrey T. Manley and Phiroz E. Tarapore

OBJECTIVE

Traumatic brain injury (TBI) in children is a significant public health concern estimated to result in over 500,000 emergency department (ED) visits and more than 60,000 hospitalizations in the United States annually. Sports activities are one important mechanism leading to pediatric TBI. In this study, the authors characterize the demographics of sports-related TBI in the pediatric population and identify predictors of prolonged hospitalization and of increased morbidity and mortality rates.

METHODS

Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from children (age 0–17 years) across 5 sports categories: fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged length of stay (LOS) in the hospital or intensive care unit (ICU), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction (set at significance threshold p = 0.01) for multiple comparisons was applied in each outcome analysis.

RESULTS

From 2003 to 2012, in total 3046 pediatric sports-related TBIs were recorded in the NTDB, and these injuries represented 11,614 incidents nationally after sample weighting. Fall or interpersonal contact events were the greatest contributors to sports-related TBI (47.4%). Mild TBI represented 87.1% of the injuries overall. Mean (± SEM) LOSs in the hospital and ICU were 2.68 ± 0.07 days and 2.73 ± 0.12 days, respectively. The overall mortality rate was 0.8%, and the prevalence of medical complications was 2.1% across all patients. Severities of head and extracranial injuries were significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Hypotension on admission to the ED was a significant predictor of failure to discharge to home (OR 0.05, 95% CI 0.03–0.07, p < 0.001). Traumatic brain injury incurred during roller sports was independently associated with prolonged hospital LOS compared with FIC events (mean increase 0.54 ± 0.15 days, p < 0.001).

CONCLUSIONS

In pediatric sports-related TBI, the severities of head and extracranial traumas are important predictors of patients developing acute medical complications, prolonged hospital and ICU LOSs, in-hospital mortality rates, and failure to discharge to home. Acute hypotension after a TBI event decreases the probability of successful discharge to home. Increasing TBI awareness and use of head-protective gear, particularly in high-velocity sports in older age groups, is necessary to prevent pediatric sports-related TBI or to improve outcomes after a TBI.

Free access

Ethan A. Winkler, John K. Yue, John F. Burke, Andrew K. Chan, Sanjay S. Dhall, Mitchel S. Berger, Geoffrey T. Manley and Phiroz E. Tarapore

OBJECTIVE

Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates.

METHODS

Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories—fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis.

RESULTS

From 2003 to 2012, in total, 4788 adult sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to home.

CONCLUSIONS

Age, hypotension on ED admission, severity of head and extracranial injuries, and sports mechanism of injury are important prognostic variables in adult sports-related TBI. Increasing TBI awareness and helmet use—particularly in equestrian and roller sports—are critical elements for decreasing sports-related TBI events in adults.

Free access

Anthony M. DiGiorgio, Rachel Tsolinas, Mohanad Alazzeh, Jenny Haefeli, Jason F. Talbott, Adam R. Ferguson, Jacqueline C. Bresnahan, Michael S. Beattie, Geoffrey T. Manley, William D. Whetstone, Praveen V. Mummaneni and Sanjay S. Dhall

OBJECTIVE

Spinal cord injuries (SCIs) occur in approximately 17,000 people in the US each year. The average length of hospital stay is 11 days, and deep venous thrombosis (DVT) rates as high as 65% are reported in these patients. There is no consensus on the appropriate timing of chemical DVT prophylaxis for this critically injured patient cohort. The object of this study was to determine if low-molecular-weight heparin (LMWH) was safe and effective if given within 24 hours of SCI.

METHODS

The Transforming Research and Clinical Knowledge in SCIs study is a prospective observational study conducted by the UCSF Brain and Spinal Injury Center. Protocol at this center includes administration of LMWH within 24 hours of SCI. Data were retrospectively reviewed to determine DVT rate, pulmonary embolism (PE) rate, and hemorrhagic complications.

RESULTS

Forty-nine patients were enrolled in the study. There were 3 DVTs (6.1%), 2 PEs (4.1%), and no hemorrhagic complications. Regression modeling did not find an association between DVT and/or PE and age, American Spinal Injury Association grade, sex, race, or having undergone a neurosurgical procedure.

CONCLUSIONS

A standardized protocol in which LMWH is given to patients with SCI within 24 hours of injury is effective in keeping venous thromboembolism at the lower end of the reported range, and is safe, with a zero rate of adverse bleeding events.