Search Results

You are looking at 81 - 90 of 99 items for

  • Author or Editor: Robert M. Starke x
Clear All Modify Search
Restricted access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Anthony M. Kaufmann, David Mathieu, Fred A. Zeiler, Michael West, Samuel T. Chao, Gandhi Varma, Veronica L. S. Chiang, James B. Yu, Heyoung L. McBride, Peter Nakaji, Emad Youssef, Norissa Honea, Stephen Rush, Douglas Kondziolka, John Y. K. Lee, Robert L. Bailey, Sandeep Kunwar, Paula Petti and L. Dade Lunsford

Object

Parasellar and sellar meningiomas are challenging tumors owing in part to their proximity to important neurovascular and endocrine structures. Complete resection can be associated with significant morbidity, and incomplete resections are common. In this study, the authors evaluated the outcomes of parasellar and sellar meningiomas managed with Gamma Knife radiosurgery (GKRS) both as an adjunct to microsurgical removal or conventional radiation therapy and as a primary treatment modality.

Methods

A multicenter study of patients with benign sellar and parasellar meningiomas was conducted through the North American Gamma Knife Consortium. For the period spanning 1988 to 2011 at 10 centers, the authors identified all patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were also required to have a minimum of 6 months of imaging and clinical follow-up after GKRS. Factors predictive of new neurological deficits following GKRS were assessed via univariate and multivariate analyses. Kaplan-Meier analysis and Cox multivariate regression analysis were used to assess factors predictive of tumor progression.

Results

The authors identified 763 patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were assessed clinically and with neuroimaging at routine intervals following GKRS. There were 567 females (74.3%) and 196 males (25.7%) with a median age of 56 years (range 8–90 years). Three hundred fifty-five patients (50.7%) had undergone at least one resection before GKRS, and 3.8% had undergone prior radiation therapy. The median follow-up after GKRS was 66.7 months (range 6–216 months). At the last follow-up, tumor volumes remained stable or decreased in 90.2% of patients. Actuarial progression-free survival rates at 3, 5, 8, and 10 years were 98%, 95%, 88%, and 82%, respectively. More than one prior surgery, prior radiation therapy, or a tumor margin dose < 13 Gy significantly increased the likelihood of tumor progression after GKRS.

At the last clinical follow-up, 86.2% of patients demonstrated no change or improvement in their neurological condition, whereas 13.8% of patients experienced symptom progression. New or worsening cranial nerve deficits were seen in 9.6% of patients, with cranial nerve (CN) V being the most adversely affected nerve. Functional improvements in CNs, especially in CNs V and VI, were observed in 34% of patients with preexisting deficits. New or worsened endocrinopathies were demonstrated in 1.6% of patients; hypothyroidism was the most frequent deficiency. Unfavorable outcome with tumor growth and accompanying neurological decline was statistically more likely in patients with larger tumor volumes (p = 0.022) and more than 1 prior surgery (p = 0.021).

Conclusions

Gamma Knife radiosurgery provides a high rate of tumor control for patients with parasellar or sellar meningiomas, and tumor control is accompanied by neurological preservation or improvement in most patients.

Restricted access

Mario Zanaty, Susanna Howard, Jorge A. Roa, Carlos M. Alvarez, David K. Kung, David J. McCarthy, Edgar A. Samaniego, Daichi Nakagawa, Robert M. Starke, Kaustubh Limaye, Sami Al Kasab, Nohra Chalouhi, Pascal Jabbour, James Torner, Daniel Tranel and David Hasan

OBJECTIVE

Revascularization of a symptomatic, medically refractory, cervical chronically occluded internal carotid artery (COICA) using endovascular techniques (ETs) has surfaced as a viable alternative to extracranial-intracranial bypass. The authors aimed to assess the safety, success, and neurocognitive outcomes of recanalization of COICA using ETs or hybrid treatment (ET plus carotid endarterectomy) and to identify candidate radiological markers that could predict success.

METHODS

The authors performed a retrospective analysis of their prospectively collected institutional database and used their previously published COICA classification to assess the potential benefits of ETs or hybrid surgery to revascularize symptomatic patients with COICA. Subjects who had undergone CT perfusion (CTP) imaging and Montreal Cognitive Assessment (MoCA) testing, both pre- and postprocedure, were included. The authors then performed a review of the literature on patients with COICA to further evaluate the success and safety of these treatment alternatives.

RESULTS

The single-center study revealed 28 subjects who had undergone revascularization of symptomatic COICA. Five subjects had CTP imaging and MoCA testing pre- and postrevascularization and thus were included in the study. All 5 patients had very large penumbra involving the entire hemisphere supplied by the ipsilateral COICA, which resolved postoperatively. Significant improvement in neurocognitive outcome was demonstrated by MoCA testing after treatment (preprocedure: 19.8 ± 2.4, postprocedure: 27 ± 1.6; p = 0.0038). Moreover, successful revascularization of COICA led to full restoration of cerebral hemodynamics in all cases. Review of the literature identified a total of 333 patients with COICA. Of these, 232 (70%) showed successful recanalization after ETs or hybrid surgery, with low major and minor complication rates (3.9% and 2.7%, respectively).

CONCLUSIONS

ETs and hybrid surgery are safe and effective alternatives to revascularize patients with symptomatic COICA. CTP imaging could be used as a radiological marker to assess cerebral hemodynamics and predict the success of revascularization. Improvement in CTP parameters is associated with significant improvement in neurocognitive functions.

Full access

Dale Ding, Robert M. Starke, Hideyuki Kano, David Mathieu, Paul P. Huang, Caleb Feliciano, Rafael Rodriguez-Mercado, Luis Almodovar, Inga S. Grills, Danilo Silva, Mahmoud Abbassy, Symeon Missios, Douglas Kondziolka, Gene H. Barnett, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

Brain arteriovenous malformations (AVMs) are the most common cause of spontaneous intracranial hemorrhage in pediatric patients (age < 18 years). Since the cumulative lifetime risk of AVM hemorrhage is considerable in children, an improved understanding of the risk factors influencing hemorrhagic presentation may aid in the management of pediatric AVMs. The aims of this first of a 2-part multicenter, retrospective cohort study are to evaluate the incidence and determine the predictors of hemorrhagic presentation in pediatric AVM patients.

METHODS

The authors analyzed pooled AVM radiosurgery data from 7 institutions participating in the International Gamma Knife Research Foundation (IGKRF). Patients younger than 18 years at the time of radiosurgery and who had at least 12 months of follow-up were included in the study cohort. Patient and AVM characteristics were compared between unruptured and ruptured pediatric AVMs.

RESULTS

A total of 357 pediatric patients were eligible for analysis, including 112 patients in the unruptured and 245 patients in the ruptured AVM cohorts (69% incidence of hemorrhagic presentation). The annual hemorrhage rate prior to radiosurgery was 6.3%. Hemorrhagic presentation was significantly more common in deep locations (basal ganglia, thalamus, and brainstem) than in cortical locations (frontal, temporal, parietal, and occipital lobes) (76% vs 62%, p = 0.006). Among the factors found to be significantly associated with hemorrhagic presentation in the multivariate logistic regression analysis, deep venous drainage (OR 3.2, p < 0.001) was the strongest independent predictor, followed by female sex (OR 1.7, p = 0.042) and smaller AVM volume (OR 1.1, p < 0.001).

CONCLUSIONS

Unruptured and ruptured pediatric AVMs have significantly different patient and nidal features. Pediatric AVM patients who possess 1 or more of these high-risk features may be candidates for relatively more aggressive management strategies.

Full access

Robert M. Starke, Dale Ding, Hideyuki Kano, David Mathieu, Paul P. Huang, Caleb Feliciano, Rafael Rodriguez-Mercado, Luis Almodovar, Inga S. Grills, Danilo Silva, Mahmoud Abbassy, Symeon Missios, Douglas Kondziolka, Gene H. Barnett, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

Pediatric patients (age < 18 years) harboring brain arteriovenous malformations (AVMs) are burdened with a considerably higher cumulative lifetime risk of hemorrhage than adults. Additionally, the pediatric population was excluded from recent prospective comparisons of intervention versus conservative management for unruptured AVMs. The aims of this multicenter, retrospective cohort study are to analyze the outcomes after stereotactic radiosurgery for unruptured and ruptured pediatric AVMs.

METHODS

We analyzed and pooled AVM radiosurgery data from 7 participating in the International Gamma Knife Research Foundation. Patients younger than 18 years of age who had at least 12 months of follow-up were included in the study cohort. Favorable outcome was defined as AVM obliteration, no post-radiosurgical hemorrhage, and no permanently symptomatic radiation-induced changes (RIC). The post-radiosurgery outcomes of unruptured versus ruptured pediatric AVMs were compared, and statistical analyses were performed to identify predictive factors.

RESULTS

The overall pediatric AVM cohort comprised 357 patients with a mean age of 12.6 years (range 2.8–17.9 years). AVMs were previously treated with embolization, resection, and fractionated external beam radiation therapy in 22%, 6%, and 13% of patients, respectively. The mean nidus volume was 3.5 cm3, 77% of AVMs were located in eloquent brain areas, and the Spetzler-Martin grade was III or higher in 59%. The mean radiosurgical margin dose was 21 Gy (range 5–35 Gy), and the mean follow-up was 92 months (range 12–266 months). AVM obliteration was achieved in 63%. During a cumulative latency period of 2748 years, the annual post-radiosurgery hemorrhage rate was 1.4%. Symptomatic and permanent radiation-induced changes occurred in 8% and 3%, respectively. Favorable outcome was achieved in 59%. In the multivariate logistic regression analysis, the absence of prior AVM embolization (p = 0.001) and higher margin dose (p < 0.001) were found to be independent predictors of a favorable outcome. The rates of favorable outcome for patients treated with a margin dose ≥ 22 Gy vs < 22 Gy were 78% (110/141 patients) and 47% (101/216 patients), respectively. A margin dose ≥ 22 Gy yielded a significantly higher probability of a favorable outcome (p < 0.001). The unruptured and ruptured pediatric AVM cohorts included 112 and 245 patients, respectively. Ruptured AVMs had significantly higher rates of obliteration (68% vs 53%, p = 0.005) and favorable outcome (63% vs 51%, p = 0.033), with a trend toward a higher incidence of post-radiosurgery hemorrhage (10% vs 4%, p = 0.07). The annual post-radiosurgery hemorrhage rates were 0.8% for unruptured and 1.6% for ruptured AVMs.

CONCLUSIONS

Radiosurgery is a reasonable treatment option for pediatric AVMs. Obliteration and favorable outcomes are achieved in the majority of patients. The annual rate of latency period hemorrhage after radiosurgery for both ruptured and unruptured pediatric AVM patients conveys a significant risk until the nidus is obliterated.

Full access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Gene H. Barnett, David Mathieu, Veronica Chiang, James B. Yu, Judith Hess, Heyoung L. McBride, Norissa Honea, Peter Nakaji, John Y. K. Lee, Gazanfar Rahmathulla, Wendi A. Evanoff, Michelle Alonso-Basanta and L. Dade Lunsford

OBJECT

Posterior fossa meningiomas represent a common yet challenging clinical entity. They are often associated with neurovascular structures and adjacent to the brainstem. Resection can be undertaken for posterior fossa meningiomas, but residual or recurrent tumor is frequent. Stereotactic radiosurgery (SRS) has been used to treat meningiomas, and this study evaluates the outcome of this approach for those located in the posterior fossa.

METHODS

At 7 medical centers participating in the North American Gamma Knife Consortium, 675 patients undergoing SRS for a posterior fossa meningioma were identified, and clinical and radiological data were obtained for these cases. Females outnumbered males at a ratio of 3.8 to 1, and the median patient age was 57.6 years (range 12–89 years). Prior resection was performed in 43.3% of the patient sample. The mean tumor volume was 6.5 cm3, and a median margin dose of 13.6 Gy (range 8–40 Gy) was delivered to the tumor.

RESULTS

At a mean follow-up of 60.1 months, tumor control was achieved in 91.2% of cases. Actuarial tumor control was 95%, 92%, and 81% at 3, 5, and 10 years after radiosurgery. Factors predictive of tumor progression included age greater than 65 years (hazard ratio [HR] 2.36, 95% CI 1.30–4.29, p = 0.005), prior history of radiotherapy (HR 5.19, 95% CI 1.69–15.94, p = 0.004), and increasing tumor volume (HR 1.05, 95% CI 1.01–1.08, p = 0.005). Clinical stability or improvement was achieved in 92.3% of patients. Increasing tumor volume (odds ratio [OR] 1.06, 95% CI 1.01–1.10, p = 0.009) and clival, petrous, or cerebellopontine angle location as compared with petroclival, tentorial, and foramen magnum location (OR 1.95, 95% CI 1.05–3.65, p = 0.036) were predictive of neurological decline after radiosurgery. After radiosurgery, ventriculoperitoneal shunt placement, resection, and radiation therapy were performed in 1.6%, 3.6%, and 1.5%, respectively.

CONCLUSIONS

Stereotactic radiosurgery affords a high rate of tumor control and neurological preservation for patients with posterior fossa meningiomas. Those with a smaller tumor volume and no prior radiation therapy were more likely to have a favorable response after radiosurgery. Rarely, additional procedures may be required for hydrocephalus or tumor progression.

Full access

Or Cohen-Inbar, Robert M. Starke, Hideyuki Kano, Gregory Bowden, Paul Huang, Rafael Rodriguez-Mercado, Luis Almodovar, Inga S. Grills, David Mathieu, Danilo Silva, Mahmoud Abbassy, Symeon Missios, John Y. K. Lee, Gene H. Barnett, Douglas Kondziolka, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

Cerebellar arteriovenous malformations (AVMs) represent the majority of infratentorial AVMs and frequently have a hemorrhagic presentation. In this multicenter study, the authors review outcomes of cerebellar AVMs after stereotactic radiosurgery (SRS).

METHODS

Eight medical centers contributed data from 162 patients with cerebellar AVMs managed with SRS. Of these patients, 65% presented with hemorrhage. The median maximal nidus diameter was 2 cm. Favorable outcome was defined as AVM obliteration and no posttreatment hemorrhage or permanent radiation-induced complications (RICs). Patients were followed clinically and radiographically, with a median follow-up of 60 months (range 7–325 months).

RESULTS

The overall actuarial rates of obliteration at 3, 5, 7, and 10 years were 38.3%, 74.2%, 81.4%, and 86.1%, respectively, after single-session SRS. Obliteration and a favorable outcome were more likely to be achieved in patients treated with a margin dose greater than 18 Gy (p < 0.001 for both), demonstrating significantly better rates (83.3% and 79%, respectively). The rate of latency preobliteration hemorrhage was 0.85%/year. Symptomatic post-SRS RICs developed in 4.5% of patients (n = 7). Predictors of a favorable outcome were a smaller nidus (p = 0.0001), no pre-SRS embolization (p = 0.003), no prior hemorrhage (p = 0.0001), a higher margin dose (p = 0.0001), and a higher maximal dose (p = 0.009). The Spetzler-Martin grade was not found to be predictive of outcome. The Virginia Radiosurgery AVM Scale score (p = 0.0001) and the Radiosurgery-Based AVM Scale score (p = 0.0001) were predictive of a favorable outcome.

CONCLUSIONS

SRS results in successful obliteration and a favorable outcome in the majority of patients with cerebellar AVMs. Most patients will require a nidus dose of higher than 18 Gy to achieve these goals. Radiosurgical and not microsurgical scales were predictive of clinical outcome after SRS.

Full access

David Hasan, Mario Zanaty, Robert M. Starke, Elias Atallah, Nohra Chalouhi, Pascal Jabbour, Amit Singla, Waldo R. Guerrero, Daichi Nakagawa, Edgar A. Samaniego, Nnenna Mbabuike, Rabih G. Tawk, Adnan H. Siddiqui, Elad I. Levy, Roberta L. Novakovic, Jonathan White, Clemens M. Schirmer, Thomas G. Brott, Hussain Shallwani and L. Nelson Hopkins

OBJECTIVE

The overall risk of ischemic stroke from a chronically occluded internal carotid artery (COICA) is around 5%–7% per year despite receiving the best available medical therapy. Here, authors propose a radiographic classification of COICA that can be used as a guide to determine the technical success and safety of endovascular recanalization for symptomatic COICA and to assess the changes in systemic blood pressure following successful revascularization.

METHODS

The radiographic images of 100 consecutive subjects with COICA were analyzed. A new classification of COICA was proposed based on the morphology, location of occlusion, and presence or absence of reconstitution of the distal ICA. The classification was used to predict successful revascularization in 32 symptomatic COICAs in 31 patients, five of whom were female (5/31 [16.13%]). Patients were included in the study if they had a COICA with ischemic symptoms refractory to medical therapy. Carotid artery occlusion was defined as 100% cross-sectional occlusion of the vessel lumen as documented on CTA or MRA and confirmed by digital subtraction angiography.

RESULTS

Four types (A–D) of radiographic COICA were identified. Types A and B were more amenable to safe revascularization than types C and D. Recanalization was successful at a rate of 68.75% (22/32 COICAs; type A: 8/8; type B: 8/8; type C: 4/8; type D: 2/8). The perioperative complication rate was 18.75% (6/32; type A: 0/8 [0%]; type B: 1/8 [12.50%]; type C: 3/8 [37.50%], type D: 2/8 [25.00%]). None of these complications led to permanent morbidity or death. Twenty (64.52%) of 31 subjects had improvement in their symptoms at the 2–6 months’ follow-up. A statistically significant decrease in systolic blood pressure (SBP) was noted in 17/21 (80.95%) patients who had successful revascularization, which persisted on follow-up (p = 0.0001). The remaining 10 subjects in whom revascularization failed had no significant changes in SBP (p = 0.73).

CONCLUSIONS

The pilot study suggested that our proposed classification of COICA may be useful as an adjunctive guide to determine the technical feasibility and safety of revascularization for symptomatic COICA using endovascular techniques. Additionally, successful revascularization may lead to a significant decrease in SBP postprocedure. A Phase 2b trial in larger cohorts to assess the efficacy of endovascular revascularization using our COICA classification is warranted.

Restricted access

Robert M. Starke, David J. McCarthy, Ching-Jen Chen, Hideyuki Kano, Brendan McShane, John Lee, David Mathieu, Lucas T. Vasas, Anthony M. Kaufmann, Wei Gang Wang, Inga S. Grills, Mohana Rao Patibandla, Christopher P. Cifarelli, Gabriella Paisan, John A. Vargo, Tomas Chytka, Ladislava Janouskova, Caleb E. Feliciano, Rafael Rodriguez-Mercado, Daniel A. Tonetti, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

In this multicenter study, the authors reviewed the results obtained in patients who underwent Gamma Knife radiosurgery (GKRS) for dural arteriovenous fistulas (dAVFs) and determined predictors of outcome.

METHODS

Data from a cohort of 114 patients who underwent GKRS for cerebral dAVFs were compiled from the International Gamma Knife Research Foundation. Favorable outcome was defined as dAVF obliteration and no posttreatment hemorrhage or permanent symptomatic radiation-induced complications. Patient and dAVF characteristics were assessed to determine predictors of outcome in a multivariate logistic regression analysis; dAVF-free obliteration was calculated in a competing-risk survival analysis; and Youden indices were used to determine optimal radiosurgical dose.

RESULTS

A mean margin dose of 21.8 Gy was delivered. The mean follow-up duration was 4 years (range 0.5–18 years). The overall obliteration rate was 68.4%. The postradiosurgery actuarial rates of obliteration at 3, 5, 7, and 10 years were 41.3%, 61.1%, 70.1%, and 82.0%, respectively. Post-GRKS hemorrhage occurred in 4 patients (annual risk of 0.9%). Radiation-induced imaging changes occurred in 10.4% of patients; 5.2% were symptomatic, and 3.5% had permanent deficits. Favorable outcome was achieved in 63.2% of patients. Patients with middle fossa and tentorial dAVFs (OR 2.4, p = 0.048) and those receiving a margin dose greater than 23 Gy (OR 2.6, p = 0.030) were less likely to achieve a favorable outcome. Commonly used grading scales (e.g., Borden and Cognard) were not predictive of outcome. Female sex (OR 1.7, p = 0.03), absent venous ectasia (OR 3.4, p < 0.001), and cavernous carotid location (OR 2.1, p = 0.019) were predictors of GKRS-induced dAVF obliteration.

CONCLUSIONS

GKRS for cerebral dAVFs achieved obliteration and avoided permanent complications in the majority of patients. Those with cavernous carotid location and no venous ectasia were more likely to have fistula obliteration following radiosurgery. Commonly used grading scales were not reliable predictors of outcome following radiosurgery.

Full access

Robert M. Starke, Hideyuki Kano, Dale Ding, John Y. K. Lee, David Mathieu, Jamie Whitesell, John T. Pierce, Paul P. Huang, Douglas Kondziolka, Chun-Po Yen, Caleb Feliciano, Rafael Rodgriguez-Mercado, Luis Almodovar, Daniel R. Pieper, Inga S. Grills, Danilo Silva, Mahmoud Abbassy, Symeon Missios, Gene H. Barnett, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

In this multicenter study, the authors reviewed the results following Gamma Knife radiosurgery (GKRS) of cerebral arteriovenous malformations (AVMs), determined predictors of outcome, and assessed predictive value of commonly used grading scales based upon this large cohort with long-term follow-up.

METHODS

Data from a cohort of 2236 patients undergoing GKRS for cerebral AVMs were compiled from the International Gamma Knife Research Foundation. Favorable outcome was defined as AVM obliteration and no posttreatment hemorrhage or permanent symptomatic radiation-induced complications. Patient and AVM characteristics were assessed to determine predictors of outcome, and commonly used grading scales were assessed.

RESULTS

The mean maximum AVM diameter was 2.3 cm, with a mean volume of 4.3 cm3. A mean margin dose of 20.5 Gy was delivered. Mean follow-up was 7 years (range 1–20 years). Overall obliteration was 64.7%. Post-GRKS hemorrhage occurred in 165 patients (annual risk 1.1%). Radiation-induced imaging changes occurred in 29.2%; 9.7% were symptomatic, and 2.7% had permanent deficits. Favorable outcome was achieved in 60.3% of patients. Patients with prior nidal embolization (OR 2.1, p < 0.001), prior AVM hemorrhage (OR 1.3, p = 0.007), eloquent location (OR 1.3, p = 0.029), higher volume (OR 1.01, p < 0.001), lower margin dose (OR 0.9, p < 0.001), and more isocenters (OR 1.1, p = 0.011) were more likely to have unfavorable outcomes in multivariate analysis. The Spetzler-Martin grade and radiosurgery-based AVM score predicted outcome, but the Virginia Radiosurgery AVM Scale provided the best assessment.

CONCLUSIONS

GKRS for cerebral AVMs achieves obliteration and avoids permanent complications in the majority of patients. Patient, AVM, and treatment parameters can be used to predict long-term outcomes following radiosurgery.

Full access

Mohana Rao Patibandla, Dale Ding, Hideyuki Kano, Robert M. Starke, John Y. K. Lee, David Mathieu, Jamie Whitesell, John T. Pierce, Paul P. Huang, Douglas Kondziolka, Caleb Feliciano, Rafael Rodriguez-Mercado, Luis Almodovar, Inga S. Grills, Danilo Silva, Mahmoud Abbassy, Symeon Missios, Gene H. Barnett, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

The role of and technique for stereotactic radiosurgery (SRS) in the management of arteriovenous malformations (AVMs) have evolved over the past four decades. The aim of this multicenter, retrospective cohort study was to compare the SRS outcomes of AVMs treated during different time periods.

METHODS

The authors selected patients with AVMs who underwent single-session SRS at 8 different centers from 1988 to 2014 with follow-up ≥ 6 months. The SRS eras were categorized as early (1988–2000) or modern (2001–2014). Statistical analyses were performed to compare the baseline characteristics and outcomes of the early versus modern SRS eras. Favorable outcome was defined as AVM obliteration, no post-SRS hemorrhage, and no permanently symptomatic radiation-induced changes (RICs).

RESULTS

The study cohort comprised 2248 patients with AVMs, including 1584 in the early and 664 in the modern SRS eras. AVMs in the early SRS era were significantly smaller (p < 0.001 for maximum diameter and volume), and they were treated with a significantly higher radiosurgical margin dose (p < 0.001). The obliteration rate was significantly higher in the early SRS era (65% vs 51%, p < 0.001), and earlier SRS treatment period was an independent predictor of obliteration in the multivariate analysis (p < 0.001). The rates of post-SRS hemorrhage and radiological, symptomatic, and permanent RICs were not significantly different between the two groups. Favorable outcome was achieved in a significantly higher proportion of patients in the early SRS era (61% vs 45%, p < 0.001), but the earlier SRS era was not statistically significant in the multivariate analysis (p = 0.470) with favorable outcome.

CONCLUSIONS

Despite considerable advances in SRS technology, refinement of AVM selection, and contemporary multimodality AVM treatment, the study failed to observe substantial improvements in SRS favorable outcomes or obliteration for patients with AVMs over time. Differences in baseline AVM characteristics and SRS treatment parameters may partially account for the significantly lower obliteration rates in the modern SRS era. However, improvements in patient selection and dose planning are necessary to optimize the utility of SRS in the contemporary management of AVMs.