Search Results

You are looking at 81 - 90 of 90 items for

  • Author or Editor: John R. W. Kestle x
Clear All Modify Search
Free access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, Samuel Browd, David Limbrick, Curtis Rozzelle, Mandeep S. Tamber, Tamara D. Simon, Chevis N. Shannon, Richard Holubkov, W. Jerry Oakes, Thomas G. Luerssen, Marion L. Walker, James M. Drake and John R. W. Kestle

Object

Shunt survival may improve when ventricular catheters are placed into the frontal horn or trigone of the lateral ventricle. However, techniques for accurate catheter placement have not been developed. The authors recently reported a prospective study designed to test the accuracy of catheter placement with the assistance of intraoperative ultrasound, but the results were poor (accurate placement in 59%). A major reason for the poor accurate placement rate was catheter movement that occurred between the time of the intraoperative ultrasound image and the first postoperative scan (33% of cases). The control group of non–ultrasound using surgeons also had a low rate of accurate placement (accurate placement in 49%). The authors conducted an exploratory post hoc analysis of patients in their ultrasound study to identify factors associated with either catheter movement or poor catheter placement so that improved surgical techniques for catheter insertion could be developed.

Methods

The authors investigated the following risk factors for catheter movement and poor catheter placement: age, ventricular size, cortical mantle thickness, surgeon experience, surgeon experience with ultrasound prior to trial, shunt entry site, shunt hardware at entry site, ventricular catheter length, and use of an ultrasound probe guide for catheter insertion. Univariate analysis followed by multivariate logistic regression models were used to determine which factors were independent risk factors for either catheter movement or inaccurate catheter location.

Results

In the univariate analyses, only age < 6 months was associated with catheter movement (p = 0.021); cortical mantle thickness < 1 cm was near-significant (p = 0.066). In a multivariate model, age remained significant after adjusting for cortical mantle thickness (OR 8.35, exact 95% CI 1.20–infinity). Univariate analyses of factors associated with inaccurate catheter placement showed that age < 6 months (p = 0.001) and a posterior shunt entry site (p = 0.021) were both associated with poor catheter placement. In a multivariate model, both age < 6 months and a posterior shunt entry site were independent risk factors for poor catheter placement (OR 4.54, 95% CI 1.80–11.42, and OR 2.59, 95% CI 1.14–5.89, respectively).

Conclusions

Catheter movement and inaccurate catheter placement are both more likely to occur in young patients (< 6 months). Inaccurate catheter placement is also more likely to occur in cases involving a posterior shunt entry site than those involving an anterior shunt entry site. Future clinical studies aimed at improving shunt placement techniques must consider the effects of young age and choice of entry site on catheter location.

Restricted access

John C. Wellons III, Chevis N. Shannon, Abhaya V. Kulkarni, Tamara D. Simon, Jay Riva-Cambrin, William E. Whitehead, W. Jerry Oakes, James M. Drake, Thomas G. Luerssen, Marion L. Walker, John R. W. Kestle and for the Hydrocephalus Clinical Research Network

Object

The purpose of this study was to define the incidence of permanent shunt placement and infection in patients who have undergone the 2 most commonly performed temporizing procedures for posthemorrhagic hydrocephalus (PHH) of prematurity: ventriculosubgaleal (VSG) shunt placement and ventricular reservoir placement for intermittent tapping.

Methods

The 4 centers of the Hydrocephalus Clinical Research Network participated in a retrospective chart review of infants with PHH who underwent treatment at each institution between 2001 and 2006. Patients were included if they had received a diagnosis of Grade 3 or 4 intraventricular hemorrhage, weighed < 1500 g at birth, and had received surgical intervention. The authors determined the incidence of conversion from a temporizing device to a permanent shunt, the incidence of CSF infection during temporization, and the 6-month CSF infection rate after permanent shunt placement.

Results

Thirty-one (86%) of 36 patients who received VSG shunts and 61 (69%) of 88 patients who received ventricular reservoirs received permanent CSF diversion with a shunt (p = 0.05). Five patients (14%) in the VSG shunt group had CSF infections during temporization, compared with 11 patients (13%) in the ventricular reservoir group (p = 0.83). The 6-month incidence of permanent shunt infection in the VSG shunt group was 16% (5 of 31), compared with 12% (7 of 61) in the reservoir placement group (p = 0.65). For the first 6 months after permanent shunt placement, infants with no preceding temporizing procedure had an infection rate of 5% (1 of 20 infants) and those who had undergone a temporizing procedure had an infection rate of 13% (12 of 92; p = 0.45).

Conclusions

The use of intermittent tapping of ventricular reservoirs in this population appears to lead to a lower incidence of permanent shunt placement than the use of VSG shunts. The incidence of infection during temporization and for the initial 6 months after conversion appears comparable for both groups. The apparent difference identified in this pilot study requires confirmation in a more rigorous study.

Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, James M. Drake, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead, John R. W. Kestle and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Endoscopic third ventriculostomy (ETV) is now established as a viable treatment option for a subgroup of children with hydrocephalus. Here, the authors report prospective, multicenter results from the Hydrocephalus Clinical Research Network (HCRN) to provide the most accurate determination of morbidity, complication incidence, and efficacy of ETV in children and to determine if intraoperative predictors of ETV success add substantially to preoperative predictors.

METHODS

All children undergoing a first ETV (without choroid plexus cauterization) at 1 of 7 HCRN centers up to June 2013 were included in the study and followed up for a minimum of 18 months. Data, including detailed intraoperative data, were prospectively collected as part of the HCRN's Core Data Project and included details of patient characteristics, ETV failure (need for repeat hydrocephalus surgery), and, in a subset of patients, postoperative complications up to the time of discharge.

RESULTS

Three hundred thirty-six eligible children underwent initial ETV, 18.8% of whom had undergone shunt placement prior to the ETV. The median age at ETV was 6.9 years (IQR 1.7–12.6), with 15.2% of the study cohort younger than 12 months of age. The most common etiologies were aqueductal stenosis (24.8%) and midbrain or tectal lesions (21.2%). Visible forniceal injury (16.6%) was more common than previously reported, whereas severe bleeding (1.8%), thalamic contusion (1.8%), venous injury (1.5%), hypothalamic contusion (1.5%), and major arterial injury (0.3%) were rare. The most common postoperative complications were CSF leak (4.4%), hyponatremia (3.9%), and pseudomeningocele (3.9%). New neurological deficit occurred in 1.5% cases, with 0.5% being permanent.

One hundred forty-one patients had documented failure of their ETV requiring repeat hydrocephalus surgery during follow-up, 117 of them during the first 6 months postprocedure. Kaplan-Meier rates of 30-day, 90-day, 6-month, 1-year, and 2-year failure-free survival were 73.7%, 66.7%, 64.8%, 61.7%, and 57.8%, respectively. According to multivariate modeling, the preoperative ETV Success Score (ETVSS) was associated with ETV success (p < 0.001), as was the intraoperative ability to visualize a “naked” basilar artery (p = 0.023).

CONCLUSIONS

The authors' documented experience represents the most detailed account of ETV results in North America and provides the most accurate picture to date of ETV success and complications, based on contemporaneously collected prospective data. Serious complications with ETV are low. In addition to the ETVSS, visualization of a naked basilar artery is predictive of ETV success.

Restricted access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Jerry Butler, Samuel R. Browd, James M. Drake, Richard Holubkov, John R. W. Kestle, David D. Limbrick, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead and for the Hydrocephalus Clinical Research Network

Object

The Hydrocephalus Clinical Research Network (HCRN), which comprises 7 pediatric neurosurgical centers in North America, provides a unique multicenter assessment of the current outcomes of CSF shunting in nonselected patients. The authors present the initial results for this cohort and compare them with results from prospective multicenter trials performed in the 1990s.

Methods

Analysis was restricted to patients with newly diagnosed hydrocephalus undergoing shunting for the first time. Detailed perioperative data from 2008 through 2012 for all HCRN centers were prospectively collected and centrally stored by trained research coordinators. Historical control data were obtained from the Shunt Design Trial (1993–1995) and the Endoscopic Shunt Insertion Trial (1996–1999). The primary outcome was time to first shunt failure, which was determined by using Cox regression survival analysis.

Results

Mean age of the 1184 patients in the HCRN cohort was older than mean age of the 720 patients in the historical cohort (2.51 years vs 1.60 years, p < 0.0001). The distribution of etiologies differed (p < 0.0001, chi-square test); more tumors and fewer myelomeningoceles caused the hydrocephalus in the HCRN cohort patients. The hazard ratio for first shunt failure significantly favored the HCRN cohort, even after the model was adjusted for the prognostic effects of age and etiology (adjusted HR 0.82, 95% CI 0.69–0.96).

Conclusions

Current outcomes of shunting in general pediatric neurosurgery practice have improved over those from the 1990s, although the reasons remain unclear.

Free access

Jay Riva-Cambrin, John R. W. Kestle, Richard Holubkov, Jerry Butler, Abhaya V. Kulkarni, James Drake, William E. Whitehead, John C. Wellons III, Chevis N. Shannon, Mandeep S. Tamber, David D. Limbrick Jr., Curtis Rozzelle, Samuel R. Browd, Tamara D. Simon and The Hydrocephalus Clinical Research Network

OBJECT

The rate of CSF shunt failure remains unacceptably high. The Hydrocephalus Clinical Research Network (HCRN) conducted a comprehensive prospective observational study of hydrocephalus management, the aim of which was to isolate specific risk factors for shunt failure.

METHODS

The study followed all first-time shunt insertions in children younger than 19 years at 6 HCRN centers. The HCRN Investigator Committee selected, a priori, 21 variables to be examined, including clinical, radiographic, and shunt design variables. Shunt failure was defined as shunt revision, subsequent endoscopic third ventriculostomy, or shunt infection. Important a priori–defined risk factors as well as those significant in univariate analyses were then tested for independence using multivariate Cox proportional hazard modeling.

RESULTS

A total of 1036 children underwent initial CSF shunt placement between April 2008 and December 2011. Of these, 344 patients experienced shunt failure, including 265 malfunctions and 79 infections. The mean and median length of follow-up for the entire cohort was 400 days and 264 days, respectively. The Cox model found that age younger than 6 months at first shunt placement (HR 1.6 [95% CI 1.1–2.1]), a cardiac comorbidity (HR 1.4 [95% CI 1.0–2.1]), and endoscopic placement (HR 1.9 [95% CI 1.2–2.9]) were independently associated with reduced shunt survival. The following had no independent associations with shunt survival: etiology, payer, center, valve design, valve programmability, the use of ultrasound or stereotactic guidance, and surgeon experience and volume.

CONCLUSIONS

This is the largest prospective study reported on children with CSF shunts for hydrocephalus. It confirms that a young age and the use of the endoscope are risk factors for first shunt failure and that valve type has no impact. A new risk factor—an existing cardiac comorbidity—was also associated with shunt failure.

Restricted access

Michael A. Williams, James P. McAllister, Marion L. Walker, Dory A. Kranz, Marvin Bergsneider, Marc R. Del Bigio, Laurel Fleming, David M. Frim, Katrina Gwinn, John R. W. Kestle, Mark G. Luciano, Joseph R. Madsen, Mary Lou Oster-Granite and Giovanna Spinella

Object

Treatment for hydrocephalus has not advanced appreciably since the advent of cerebrospinal fluid (CSF) shunts more than 50 years ago. Many questions remain that clinical and basic research could address, which in turn could improve therapeutic options. To clarify the main issues facing hydrocephalus research and to identify critical advances necessary to improve outcomes for patients with hydrocephalus, the National Institutes of Health (NIH) sponsored a workshop titled “Hydrocephalus: Myths, New Facts, and Clear Directions.” The purpose of this paper is to report on the recommendations that resulted from that workshop.

Methods

The workshop convened from September 29 to October 1, 2005, in Bethesda, Maryland. Among the 150 attendees was an international group of participants, including experts in pediatric and adult hydrocephalus as well as scientists working in related fields, neurosurgeons, laboratory-based neuroscientists, neurologists, patient advocates, individuals with hydrocephalus, parents, and NIH program and intramural staff. Plenary and breakout sessions covered injury and recovery mechanisms, modeling, biomechanics, diagnosis, current treatment and outcomes, complications, quality of life, future treatments, medical devices, development of research networks and information sharing, and education and career development.

Results

The conclusions were as follows: 1) current methods of diagnosis, treatment, and outcomes monitoring need improvement; 2) frequent complications, poor rate of shunt survival, and poor quality of life for patients lead to unsatisfactory outcomes; 3) investigators and caregivers need additional methods to monitor neurocognitive function and control of CSF variables such as pressure, flow, or pulsatility; 4) research warrants novel interdisciplinary approaches; 5) understanding of the pathophysiological and recovery mechanisms of neuronal function in hydrocephalus is poor, warranting further investigation; and 6) both basic and clinical aspects warrant expanded and innovative training programs.

Conclusions

The research priorities of this workshop provide critical guidance for future research in hydrocephalus, which should result in advances in knowledge, and ultimately in the treatment for this important disorder and improved outcomes in patients of all ages.

Restricted access

Tamara D. Simon, Matthew P. Kronman, Kathryn B. Whitlock, Samuel R. Browd, Richard Holubkov, John R. W. Kestle, Abhaya V. Kulkarni, Marcie Langley, David D. Limbrick Jr., Thomas G. Luerssen, W. Jerry Oakes, Jay Riva-Cambrin, Curtis Rozzelle, Chevis N. Shannon, Mandeep Tamber, John C. Wellons III, William E. Whitehead and Nicole Mayer-Hamblett

OBJECTIVE

CSF shunt infection treatment requires both surgical and antibiotic decisions. Using the Hydrocephalus Clinical Research Network (HCRN) Registry and 2004 Infectious Diseases Society of America (IDSA) guidelines that were not proactively distributed to HCRN providers, the authors previously found high adherence to surgical recommendations but poor adherence to intravenous (IV) antibiotic duration recommendations. In general, IV antibiotic duration was longer than recommended. In March 2017, new IDSA guidelines expanded upon the 2004 guidelines by including recommendations for selection of specific antibiotics. The objective of this study was to describe adherence to both 2004 and 2017 IDSA guideline recommendations for CSF shunt infection treatment, and to report reinfection rates associated with adherence to guideline recommendations.

METHODS

The authors investigated a prospective cohort of children younger than 18 years of age who underwent treatment for first CSF shunt infection at one of 7 hospitals from April 2008 to December 2012. CSF shunt infection was diagnosed by recovery of bacteria from CSF culture (CSF-positive infection). Adherence to 2004 and 2017 guideline recommendations was determined. Adherence to antibiotics was further classified as longer or shorter duration than guideline recommendations. Reinfection rates with 95% confidence intervals (CIs) were generated.

RESULTS

There were 133 children with CSF-positive infections addressed by 2004 IDSA guideline recommendations, with 124 at risk for reinfection. Zero reinfections were observed among those whose treatment was fully adherent (0/14, 0% [95% CI 0%–20%]), and 15 reinfections were observed among those whose infection treatment was nonadherent (15/110, 14% [95% CI 8%–21%]). Among the 110 first infections whose infection treatment was nonadherent, 74 first infections were treated for a longer duration than guidelines recommended and 9 developed reinfection (9/74, 12% [95% CI 6%–22%]). There were 145 children with CSF-positive infections addressed by 2017 IDSA guideline recommendations, with 135 at risk for reinfection. No reinfections were observed among children whose treatment was fully adherent (0/3, 0% [95% CI 0%–64%]), and 18 reinfections were observed among those whose infection treatment was nonadherent (18/132, 14% [95% CI 8%–21%]).

CONCLUSIONS

There is no clear evidence that either adherence to IDSA guidelines or duration of treatment longer than recommended is associated with reduction in reinfection rates. Because IDSA guidelines recommend shorter IV antibiotic durations than are typically used, improvement efforts to reduce IV antibiotic use in CSF shunt infection treatment can and should utilize IDSA guidelines.

Restricted access

John R. W. Kestle, Amy Lee, Richard C. E. Anderson, Barbu Gociman, Kamlesh B. Patel, Matthew D. Smyth, Craig Birgfeld, Ian F. Pollack, Jesse A. Goldstein, Mandeep Tamber, Thomas Imahiyerobo, Faizi A. Siddiqi and for the Synostosis Research Group

OBJECTIVE

The authors created a collaborative network, the Synostosis Research Group (SynRG), to facilitate multicenter clinical research on craniosynostosis. To identify common and differing practice patterns within the network, they assessed the SynRG surgeons’ management preferences for sagittal synostosis. These results will be incorporated into planning cooperative studies.

METHODS

The SynRG consists of 12 surgeons at 5 clinical sites. An email survey was distributed to SynRG surgeons in late 2016, and responses were collected through early 2017. Responses were collated and analyzed descriptively.

RESULTS

All of the surgeons—7 plastic/craniofacial surgeons and 5 neurosurgeons—completed the survey. They varied in both experience (1–24 years) and sagittal synostosis case volume in the preceding year (5–45 cases). Three sites routinely perform preoperative CT scans. The preferred surgical technique for children younger than 3 months is strip craniectomy (10/12 surgeons), whereas children older than 6 months are all treated with open cranial vault surgery. Pre-incision cefazolin, preoperative complete blood count panels, and an arterial line were used by most surgeons, but tranexamic acid was used routinely at 3 sites and never at the other 2 sites. Among surgeons performing endoscopic strip craniectomy surgery (SCS), most create a 5-cm-wide craniectomy, whereas 2 surgeons create a 2-cm strip. Four surgeons routinely send endoscopic SCS patients to the intensive care unit after surgery. Two of the 5 sites routinely obtain a CT scan within the 1st year after surgery.

CONCLUSIONS

The SynRG surgeons vary substantially in the use of imaging, the choice of surgical procedure and technique, and follow-up. A collaborative network will provide the opportunity to study different practice patterns, reduce variation, and contribute multicenter data on the management of children with craniosynostosis.