Search Results

You are looking at 61 - 67 of 67 items for

  • Author or Editor: Matthew D. Smyth x
Clear All Modify Search
Free access

Jakub Godzik, Michael P. Kelly, Alireza Radmanesh, David Kim, Terrence F. Holekamp, Matthew D. Smyth, Lawrence G. Lenke, Joshua S. Shimony, Tae Sung Park, Jeffrey Leonard and David D. Limbrick

Object

Chiari malformation Type I (CM-I) is a developmental abnormality often associated with a spinal syrinx. Patients with syringomyelia are known to have an increased risk of scoliosis, yet the influence of specific radiographically demonstrated features on the prevalence of scoliosis remains unclear. The primary objective of the present study was to investigate the relationship of maximum syrinx diameter and tonsillar descent to the presence of scoliosis in patients with CM-I–associated syringomyelia. A secondary objective was to explore the role of craniovertebral junction (CVJ) characteristics as additional risk factors for scoliosis.

Methods

The authors conducted a retrospective review of pediatric patients evaluated for CM-I with syringomyelia at a single institution in the period from 2000 to 2012. Syrinx morphology and CVJ parameters were evaluated with MRI, whereas the presence of scoliosis was determined using standard radiographic criteria. Multiple logistic regression was used to analyze radiological features that were independently associated with scoliosis.

Results

Ninety-two patients with CM-I and syringomyelia were identified. The mean age was 10.5 ± 5 years. Thirty-five (38%) of 92 patients had spine deformity; 23 (66%) of these 35 patients were referred primarily for deformity, and 12 (34%) were diagnosed with deformity during workup for other symptoms. Multiple regression analysis revealed maximum syrinx diameter > 6 mm (OR 12.1, 95% CI 3.63–40.57, p < 0.001) and moderate (5–12 mm) rather than severe (> 12 mm) tonsillar herniation (OR 7.64, 95% CI 2.3–25.31, p = 0.001) as significant predictors of spine deformity when controlling for age, sex, and syrinx location.

Conclusions

The current study further elucidates the association between CM-I and spinal deformity by defining specific radiographic characteristics associated with the presence of scoliosis. Specifically, patients presenting with larger maximum syrinx diameters (> 6 mm) have an increased risk of scoliosis.

Restricted access

Matthew D. Smyth, David D. Limbrick Jr., Jeffrey G. Ojemann, John Zempel, Shenandoah Robinson, Donncha F. O'Brien, Russell P. Saneto, Monisha Goyal, Richard E. Appleton, Francesco T. Mangano and Tae Sung Park

Object

The authors conducted a multiinstitutional, retrospective analysis to better define outcome and prognostic indicators for temporal lobe epilepsy surgery for suspected mesial temporal sclerosis (MTS) in young children.

Methods

Data were collected for all children undergoing temporal resections at four epilepsy centers over approximately 10 years. Children with a histopathological diagnosis of neoplasm were excluded.

Forty-nine patients (28 boys and 21 girls) were included in the study. Their mean age at surgery was 9.1 years (range 1.25–13.9 years). The mean age at seizure onset was 3.2 years (range birth–10 years). Histopathological examination demonstrated MTS in 26 cases, gliosis in nine, dysplasia in five, gliosis with dysplasia in four, and nonspecific or normal findings in five. Forty-one anterior temporal lobectomies (nine tailored) and eight selective amygdalohippocampectomies were performed (28 left side, 21 right side). Twenty-nine children (59.2%) underwent invasive monitoring. Operative complications included extraaxial hematomas (two cases), cerebrospinal fluid leaks (two cases), and hydrocephalus (one case), each in children undergoing invasive monitoring. The mean duration of follow up was 26.4 months (range 5–74 months) overall and 23.9 months (range 6–74 months) for the Engel Class I subgroup. Outcomes at the most recent follow-up examination were categorized as Engel Class I–II in 31 (63.3%) of 49 children overall, 20 (76.9%) of 26 children with confirmed MTS, four (36.4%) of 11 children with gliosis, and four (57.1%) of seven children with dysplasia. All patients who underwent selective amygdalohippocampectomies had confirmed MTS and Engel Class I outcomes. Patients with more than one seizure type (p = 0.048) or moderate to severe developmental delay (p = 0.03) had significantly worse outcomes (Engel Class III or IV). Age at seizure onset, age at surgery, and duration of seizure disorder were not significantly related to outcome. There was a trend for bilateral or extratemporal findings on electroencephalography (EEG) (p = 0.157), high preoperative seizure frequency (p = 0.097), and magnetic resonance (MR) imaging findings inconsistent with MTS (p = 0.142) to be associated with worse outcome, although it did not reach statistical significance. In only 12 (46.1%) of the 26 patients with confirmed MTS was the condition prospectively diagnosed on preoperative MR imaging.

Conclusions

Younger children with temporal lobe epilepsy have satisfying surgical outcomes, particularly when MTS is present. Magnetic resonance imaging may not be as sensitive in detecting MTS in children as in older patients. Negative predictors identified include multiple seizure types and preoperative developmental delay. Multifocal or bilateral EEG findings, high preoperative seizure frequency, and MR imaging findings inconsistent with MTS also independently suggested worse outcome.

Full access

Gloria J. Guzmán Pérez-Carrillo, Christopher Owen, Katherine E. Schwetye, Spencer McFarlane, Ananth K. Vellimana, Soe Mar, Michelle M. Miller-Thomas, Joshua S. Shimony, Matthew D. Smyth and Tammie L. S. Benzinger

OBJECTIVE

Many patients with medically intractable epilepsy have mesial temporal sclerosis (MTS), which significantly affects their quality of life. The surgical excision of MTS lesions can result in marked improvement or even complete resolution of the epileptic episodes. Reliable radiological diagnosis of MTS is a clinical challenge. The purpose of this study was to evaluate the utility of volumetric mapping of the hippocampi for the identification of MTS in a case-controlled series of pediatric patients who underwent resection for medically refractory epilepsy, using pathology as a gold standard.

METHODS

A cohort of 57 pediatric patients who underwent resection for medically intractable epilepsy between 2005 and 2015 was evaluated. On pathological investigation, this group included 24 patients with MTS and 33 patients with non-MTS findings. Retrospective quantitative volumetric measurements of the hippocampi were acquired for 37 of these 57 patients. Two neuroradiologists with more than 10 years of experience who were blinded to the patients' MTS status performed the retrospective review of MR images. To produce the volumetric data, MR scans were parcellated and segmented using the FreeSurfer software suite. Hippocampal regions of interest were compared against an age-weighted local regression curve generated with data from the pediatric normal cohort. Standard deviations and percentiles of specific subjects were calculated. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for the original clinical read and the expert readers. Receiver operating characteristic curves were generated for the methods of classification to compare results from the readers with the authors' results, and an optimal threshold was determined. From that threshold the sensitivity, specificity, PPV, and NPV were calculated for the volumetric analysis.

RESULTS

With the use of quantitative volumetry, a sensitivity of 72%, a specificity of 95%, a PPV of 93%, an NPV of 78%, and an area under the curve of 0.84 were obtained using a percentage difference of normalized hippocampal volume. The resulting specificity (95%) and PPV (93%) are superior to the original clinical read and to Reader A and Reader B's findings (range for specificity 74%–86% and for PPV 64%–71%). The sensitivity (72%) and NPV (78%) are comparable to Reader A's findings (73% and 81%, respectively) and are better than those of the original clinical read and of Reader B (sensitivity 45% and 63% and NPV 71% and 70%, respectively).

CONCLUSIONS

Volumetric measurement of the hippocampi outperforms expert readers in specificity and PPV, and it demonstrates comparable to superior sensitivity and NPV. Volumetric measurements can complement anatomical imaging for the identification of MTS, much like a computer-aided detection tool would. The implementation of this approach in the daily clinical workflow could significantly improve diagnostic accuracy.

Full access

Travis R. Ladner, Jacob K. Greenberg, Nicole Guerrero, Margaret A. Olsen, Chevis N. Shannon, Chester K. Yarbrough, Jay F. Piccirillo, Richard C. E. Anderson, Neil A. Feldstein, John C. Wellons III, Matthew D. Smyth, Tae Sung Park and David D. Limbrick Jr.

OBJECTIVE

Administrative billing data may facilitate large-scale assessments of treatment outcomes for pediatric Chiari malformation Type I (CM-I). Validated International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code algorithms for identifying CM-I surgery are critical prerequisites for such studies but are currently only available for adults. The objective of this study was to validate two ICD-9-CM code algorithms using hospital billing data to identify pediatric patients undergoing CM-I decompression surgery.

METHODS

The authors retrospectively analyzed the validity of two ICD-9-CM code algorithms for identifying pediatric CM-I decompression surgery performed at 3 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-I), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression or laminectomy). Algorithm 2 restricted this group to the subset of patients with a primary discharge diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated.

RESULTS

Among 625 first-time admissions identified by Algorithm 1, the overall PPV for CM-I decompression was 92%. Among the 581 admissions identified by Algorithm 2, the PPV was 97%. The PPV for Algorithm 1 was lower in one center (84%) compared with the other centers (93%–94%), whereas the PPV of Algorithm 2 remained high (96%–98%) across all subgroups. The sensitivity of Algorithms 1 (91%) and 2 (89%) was very good and remained so across subgroups (82%–97%).

CONCLUSIONS

An ICD-9-CM algorithm requiring a primary diagnosis of CM-I has excellent PPV and very good sensitivity for identifying CM-I decompression surgery in pediatric patients. These results establish a basis for utilizing administrative billing data to assess pediatric CM-I treatment outcomes.

Restricted access

John R. W. Kestle, Amy Lee, Richard C. E. Anderson, Barbu Gociman, Kamlesh B. Patel, Matthew D. Smyth, Craig Birgfeld, Ian F. Pollack, Jesse A. Goldstein, Mandeep Tamber, Thomas Imahiyerobo, Faizi A. Siddiqi and for the Synostosis Research Group

OBJECTIVE

The authors created a collaborative network, the Synostosis Research Group (SynRG), to facilitate multicenter clinical research on craniosynostosis. To identify common and differing practice patterns within the network, they assessed the SynRG surgeons’ management preferences for sagittal synostosis. These results will be incorporated into planning cooperative studies.

METHODS

The SynRG consists of 12 surgeons at 5 clinical sites. An email survey was distributed to SynRG surgeons in late 2016, and responses were collected through early 2017. Responses were collated and analyzed descriptively.

RESULTS

All of the surgeons—7 plastic/craniofacial surgeons and 5 neurosurgeons—completed the survey. They varied in both experience (1–24 years) and sagittal synostosis case volume in the preceding year (5–45 cases). Three sites routinely perform preoperative CT scans. The preferred surgical technique for children younger than 3 months is strip craniectomy (10/12 surgeons), whereas children older than 6 months are all treated with open cranial vault surgery. Pre-incision cefazolin, preoperative complete blood count panels, and an arterial line were used by most surgeons, but tranexamic acid was used routinely at 3 sites and never at the other 2 sites. Among surgeons performing endoscopic strip craniectomy surgery (SCS), most create a 5-cm-wide craniectomy, whereas 2 surgeons create a 2-cm strip. Four surgeons routinely send endoscopic SCS patients to the intensive care unit after surgery. Two of the 5 sites routinely obtain a CT scan within the 1st year after surgery.

CONCLUSIONS

The SynRG surgeons vary substantially in the use of imaging, the choice of surgical procedure and technique, and follow-up. A collaborative network will provide the opportunity to study different practice patterns, reduce variation, and contribute multicenter data on the management of children with craniosynostosis.