Search Results

You are looking at 31 - 40 of 82 items for

  • Author or Editor: Paul Klimo Jr x
Clear All Modify Search
Free access

David D. Limbrick Jr., Lissa C. Baird, Paul Klimo Jr., Jay Riva-Cambrin and Ann Marie Flannery

Object

The objective of this systematic review was to examine the existing literature comparing CSF shunts and endoscopic third ventriculostomy (ETV) for the treatment of pediatric hydrocephalus and to make evidence-based recommendations regarding the selection of surgical technique for this condition.

Methods

Both the US National Library of Medicine and the Cochrane Database of Systematic Reviews were queried using MeSH headings and key words specifically chosen to identify published articles detailing the use of CSF shunts and ETV for the treatment of pediatric hydrocephalus. Articles meeting specific criteria that had been determined a priori were examined, and data were abstracted and compiled in evidentiary tables. These data were then analyzed by the Pediatric Hydrocephalus Systematic Review and Evidence-Based Guidelines Task Force to consider treatment recommendations based on the evidence.

Results

Of the 122 articles identified using optimized search parameters, 52 were recalled for full-text review. One additional article, originally not retrieved in the search, was also reviewed. Fourteen articles met all study criteria and contained comparative data on CSF shunts and ETV. In total, 6 articles (1 Class II and 5 Class III) were accepted for inclusion in the evidentiary table; 8 articles were excluded for various reasons. The tabulated evidence supported the evaluation of CSF shunts versus ETV.

Conclusions

Cerebrospinal fluid shunts and ETV demonstrated equivalent outcomes in the clinical etiologies studied.

Recommendation: Both CSF shunts and ETV are options in the treatment of pediatric hydrocephalus. Strength of Recommendation: Level II, moderate clinical certainty.

Full access

Paul Klimo Jr., Cody L. Nesvick, Alberto Broniscer, Brent A. Orr and Asim F. Choudhri

OBJECT

Malignant tumors of the brainstem, excluding classic diffuse intrinsic pontine gliomas (DIPGs), are a very rare, heterogeneous group of neoplasms that have been infrequently described in the literature. In this paper, the authors present their experiences with treating these unique cancers.

METHODS

A retrospective chart review was conducted to identify eligible cases over a 15-year period. All tumors involving the pons were, by consensus, felt not to be DIPGs based on their neuroimaging features. Demographic information, pathological specimens, neuroimaging characteristics, surgical and nonsurgical management plans, and survival data were gathered for analysis.

RESULTS

Between January 2000 and December 2014, 29 patients were identified. The mean age at diagnosis was 8.4 years (range 2 months to 25 years), and 17 (59%) patients were male. The most common presenting signs and symptoms were cranial neuropathies (n = 24; 83%), hemiparesis (n = 12; 41%), and ataxia or gait disturbance (n = 10; 34%). There were 18 glial and 11 embryonal tumors. Of the glial tumors, 5 were radiation-induced and 1 was a malignant transformation of a previously known low-grade tumor. Surgical intervention consisted of biopsy alone in 12 patients and some degree of resection in another 15 patients. Two tumors were diagnosed postmortem. The median overall survival for all patients was 196 days (range 15 to 3999 days). There are currently 5 (17%) patients who are still alive: 1 with an anaplastic astrocytoma and the remaining with embryonal tumors.

CONCLUSIONS

In general, malignant non-DIPG tumors of the brainstem carry a poor prognosis. However, maximal cytoreductive surgery may be an option for select patients with focal tumors. Long-term survival is possible in patients with nonmetastatic embryonal tumors after multimodal treatment, most importantly maximal resection.

Full access

Nicholas B. Rossi, Nickalus R. Khan, Tamekia L. Jones, Jacob Lepard, Joseph H. McAbee and Paul Klimo Jr.

OBJECT

Ventricular shunts for pediatric hydrocephalus continue to be plagued with high failure rates. Reported risk factors for shunt failure are inconsistent and controversial. The raw or global shunt revision rate has been the foundation of several proposed quality metrics. The authors undertook this study to determine risk factors for shunt revision within their own patient population.

METHODS

In this single-center retrospective cohort study, a database was created of all ventricular shunt operations performed at the authors’ institution from January 1, 2010, through December 2013. For each index shunt surgery, demographic, clinical, and procedural variables were assembled. An “index surgery” was defined as implantation of a new shunt or the revision or augmentation of an existing shunt system. Bivariate analyses were first performed to evaluate individual effects of each independent variable on shunt failure at 90 days and at 180 days. A final multivariate model was chosen for each outcome by using a backward model selection approach.

RESULTS

There were 466 patients in the study accounting for 739 unique (“index”) operations, for an average of 1.59 procedures per patient. The median age for the cohort at the time of the first shunt surgery was 5 years (range 0–35.7 years), with 53.9% males. The 90- and 180-day shunt failure rates were 24.1% and 29.9%, respectively. The authors found no variable—demographic, clinical, or procedural—that predicted shunt failure within 90 or 180 days.

CONCLUSIONS

In this study, none of the risk factors that were examined were statistically significant in determining shunt failure within 90 or 180 days. Given the negative findings and the fact that all other risk factors for shunt failure that have been proposed in the literature thus far are beyond the control of the surgeon (i.e., nonmodifiable), the use of an institution’s or individual’s global shunt revision rate remains questionable and needs further evaluation before being accepted as a quality metric.

Full access

Brian T. Ragel, Paul Klimo Jr., Jonathan E. Martin, Richard J. Teff, Hans E. Bakken and Rocco A. Armonda

Object

Decompressive craniectomy (DC) with dural expansion is a life-saving neurosurgical procedure performed for recalcitrant intracranial hypertension due to trauma, stroke, and a multitude of other etiologies. Illustratively, we describe technique and lessons learned using DC for battlefield trauma.

Methods

Neurosurgical operative logs from service (October 2007 to September 2009) in Afghanistan that detail DC cases for trauma were analyzed. Illustrative examples of frontotemporoparietal and bifrontal DC that depict battlefield experience performing these procedures are presented with attention drawn to the L.G. Kempe hemispherectomy incision, brainstem decompression techniques, and dural onlay substitutes.

Results

Ninety craniotomies were performed for trauma over the time period analyzed. Of these, 28 (31%) were DCs. Of the 28 DCs, 24 (86%) were frontotemporoparietal DCs, 7 (25%) were bifrontal DCs, and 2 (7%) were suboccipital DCs. Decompressive craniectomies were performed for 19 penetrating head injuries (13 gunshot wounds and 6 explosions) and 9 severe closed head injuries (6 war-related explosions and 3 others).

Conclusions

Thirty-one percent of craniotomies performed for trauma were DCs. Battlefield neurosurgeons use DC to allow for safe transfer of neurologically ill patients to tertiary military hospitals, which can be located 8–18 hours from a war zone. The authors recommend the L.G. Kempe incision for blood supply preservation, large craniectomies to prevent brain strangulation over bone edges, minimal brain debridement, adequate brainstem decompression, and dural onlay substitutes for dural closure.

Restricted access

Paul Klimo Jr., Peter Kan, Ganesh Rao, Ronald Apfelbaum and Douglas Brockmeyer

Object

The most contentious issue in the management of os odontoideum surrounds the decision to attempt atlantoaxial fusion in patients with asymptomatic lesions. The authors examined the clinical presentation and outcome in patients with os odontoideum who underwent surgical stabilization, with an emphasis on 3 patients who initially received conservative treatment and suffered delayed neurological injury.

Methods

Seventy-eight patients (mean age 20.5 years; median 15 years) were identified in a 17-year retrospective review. The median follow-up period was 14 months (range 1–115 months). Neck pain was the most common symptom (64%), and 56% of patients presented after traumatic injury. Eighteen patients had neurological signs or symptoms at presentation, and an additional 15 had a history of intermittent or prior neurological symptoms. Fifteen patients had undergone ≥ 1 attempt at atlantoaxial fusion elsewhere.

Results

Seventy-seven patients underwent posterior fusion and rigid screw fixation combined with a graft/wire construct: 75 had C1–2 fusion and 2 had occipitocervical fusion. One patient had an odontoid screw placed. Fusion was achieved in all patients at a median of 4.8 months (range 2–17 months). Approximately 90% of patients had resolution or improvement of their neck pain or neurological symptoms.

Conclusions

The authors believe that patients with os odontoideum are at risk for future spinal cord compromise. Forty-four percent of our patients had myelopathic symptoms at referral, and 3 had significant neurological deterioration when a known os odontoideum was left untreated. This risk of late neurological deterioration should be considered when counseling patients. Stabilization using internal screw fixation techniques resulted in 100% fusion, whereas 15% of patients had previously undergone unsuccessful wire and external bracing attempts.

Free access

Ryan P. Lee, Kimberly A. Foster, Jock C. Lillard, Paul Klimo Jr., David W. Ellison, Brent Orr and Frederick A. Boop

OBJECTIVE

Thalamopeduncular tumors are a group of pediatric low-grade gliomas that arise at the interface of the thalamus and brainstem peduncle. They typically occur within the first 2 decades of life, presenting with progressive spastic hemiparesis. Treatment strategies, including surgical intervention, have varied significantly. The authors present their experience in the treatment of 13 children, ages 2–15 years, with non-neurofibromatosis–related pilocytic astrocytomas located in the thalamopeduncular region.

METHODS

Between 2003 and 2016, 13 children presenting with progressive spastic hemiparesis due to a pilocytic astrocytoma at the interface of the thalamus and cerebral peduncles were identified. Medical records were reviewed retrospectively for clinical, radiological, pathological, and surgical data. Formalin-fixed, paraffin-embedded tissue was obtained for 12 cases and tested for KIAA1549-BRAF fusion and BRAF V600E point mutation.

RESULTS

On preoperative diffusion tensor imaging tractography (performed in 12 patients), the ipsilateral corticospinal tract was displaced laterally in 1 case (8.3%), medially in 1 case (8.3%), anterolaterally in 10 cases (83%), and posteriorly in no cases. Ten patients underwent resection via a transtemporal, transchoroidal approach, which was chosen to avoid further damage to motor function in cases of tumors that caused anterolateral or medial corticospinal tract displacement. With this approach, complications included hemianopia, oculomotor palsy, and tremor at a rate of 50%. Among the 12 patients with obtainable follow-up (mean 50.9 months), none received adjuvant therapy, and only 2 (17%) experienced recurrence or progression. KIAA1549-BRAF fusions were present in 10 cases (83%), while BRAF V600E was absent (0%). The 2 fusion-negative tumors had clinical features atypical for the series, including multi-focality and infiltration.

CONCLUSIONS

Transcortical, transchoroidal resection of thalamopeduncular tumors through the middle temporal gyrus allows for a high rate of gross-total resection and cure. Diffuse tensor tractography is a critical component of the preoperative planning process to determine the location of white matter tracts in proximity. Molecular status may correlate with clinical features, and the presence of BRAF lesions offers an additional target for future novel therapeutics.

Full access

Nickalus R. Khan, Brittany D. Fraser, Vincent Nguyen, Kenneth Moore, Scott Boop, Brandy N. Vaughn and Paul Klimo Jr.

OBJECTIVE

Despite established risk factors, abusive head trauma (AHT) continues to plague our communities. Cerebrovascular accident (CVA), depicted as areas of hypodensity on CT scans or diffusion restriction on MR images, is a well-known consequence of AHT, but its etiology remains elusive. The authors hypothesize that a CVA, in isolation or in conjunction with other intracranial injuries, compounds the severity of a child’s injury, which in turn leads to greater health care utilization, including surgical services, and an increased risk of death.

METHODS

The authors conducted a retrospective observational study to evaluate data obtained in all children with AHT who presented to Le Bonheur Children’s Hospital (LBCH) from January 2009 through August 2016. Demographic, hospital course, radiological, cost, and readmission information was collected. Children with one or more CVA were compared with those without a CVA.

RESULTS

The authors identified 282 children with AHT, of whom 79 (28%) had one or more CVA. Compared with individuals without a CVA, children with a stroke were of similar overall age (6 months), sex (61% male), and race (56% African-American) and had similar insurance status (81% public). Just under half of all children with a stroke (38/79, 48%) were between 1–6 months of age. Thirty-five stroke patients (44%) had a Grade II injury, and 44 (56%) had a Grade III injury. The majority of stroke cases were bilateral (78%), multifocal (85%), associated with an overlying subdural hematoma (86%), and were watershed/hypoperfusion in morphology (73%). Thirty-six children (46%) had a hemispheric stroke. There were a total of 48 neurosurgical procedures performed on 28 stroke patients. Overall median hospital length of stay (11 vs 3 days), total hospital charges ($13.8 vs $6.6 million), and mean charges per patient ($174,700 vs $32,500) were significantly higher in the stroke cohort as a whole, as well as by injury grade (II and III). Twenty children in the stroke cohort (25%) died as a direct result of their AHT, whereas only 2 children in the nonstroke cohort died (1%). There was a 30% readmission rate within the first 180-day postinjury period for patients in the stroke cohort, and of these, approximately 50% required additional neurosurgical intervention(s).

CONCLUSIONS

One or more strokes in a child with AHT indicate a particularly severe injury. These children have longer hospital stays, greater hospital charges, and a greater likelihood of needing a neurosurgical intervention (i.e., bedside procedure or surgery). Stroke is such an important predictor of health care utilization and outcome that it warrants a subcategory for both Grade II and Grade III injuries. It should be noted that the word “stroke” or “CVA” should not automatically imply arterial compromise in this population.

Restricted access

Sebastian P. Norrdahl, Tamekia L. Jones, Pooja Dave, David S. Hersh, Brandy Vaughn and Paul Klimo Jr.

OBJECTIVE

In pediatric patients, the development of a postoperative pseudomeningocele after an elective craniotomy is not unusual. Most will resolve with time, but some may require intervention. In this study, the authors analyzed patients who required intervention for a postoperative pseudomeningocele following an elective craniotomy or craniectomy and identified factors associated with the need for intervention.

METHODS

An institutional operative database of elective craniotomies and craniectomies was queried to identify all surgeries associated with development of a postoperative pseudomeningocele from January 1, 2010, to December 31, 2017. Demographic and surgical data were collected, as were details regarding postoperative events and interventions during either the initial admission or upon readmission. A bivariate analysis was performed to compare patients who underwent observation with those who required intervention.

RESULTS

Following 1648 elective craniotomies or craniectomies, 84 (5.1%) clinically significant pseudomeningoceles were identified in 82 unique patients. Of these, 58 (69%) of the pseudomeningoceles were diagnosed during the index admission (8 of which persisted and resulted in readmission), and 26 (31%) were diagnosed upon readmission. Forty-nine patients (59.8% of those with a pseudomeningocele) required one or more interventions, such as lumbar puncture(s), lumbar drain placement, wound exploration, or shunt placement or revision. Only race (p < 0.01) and duraplasty (p = 0.03, OR 3.0) were associated with the need for pseudomeningocele treatment.

CONCLUSIONS

Clinically relevant pseudomeningoceles developed in 5% of patients undergoing an elective craniotomy, with 60% of these pseudomeningoceles needing some form of intervention. The need for intervention was associated with race and whether a duraplasty was performed.

Restricted access

Cody L. Nesvick, Clinton J. Thompson, Frederick A. Boop and Paul Klimo Jr.

Object

Observational studies, such as cohort and case-control studies, are valuable instruments in evidence-based medicine. Case-control studies, in particular, are becoming increasingly popular in the neurosurgical literature due to their low cost and relative ease of execution; however, no one has yet systematically assessed these types of studies for quality in methodology and reporting.

Methods

The authors performed a literature search using PubMed/MEDLINE to identify all studies that explicitly identified themselves as “case-control” and were published in the JNS Publishing Group journals (Journal of Neurosurgery, Journal of Neurosurgery: Pediatrics, Journal of Neurosurgery: Spine, and Neurosurgical Focus) or Neurosurgery. Each paper was evaluated for 22 descriptive variables and then categorized as having either met or missed the basic definition of a case-control study. All studies that evaluated risk factors for a well-defined outcome were considered true case-control studies. The authors sought to identify key features or phrases that were or were not predictive of a true case-control study. Those papers that satisfied the definition were further evaluated using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist.

Results

The search detected 67 papers that met the inclusion criteria, of which 32 (48%) represented true case-control studies. The frequency of true case-control studies has not changed with time. Use of odds ratios (ORs) and logistic regression (LR) analysis were strong positive predictors of true case-control studies (for odds ratios, OR 15.33 and 95% CI 4.52–51.97; for logistic regression analysis, OR 8.77 and 95% CI 2.69–28.56). Conversely, negative predictors included focus on a procedure/intervention (OR 0.35, 95% CI 0.13–0.998) and use of the word “outcome” in the Results section (OR 0.23, 95% CI 0.082–0.65). After exclusion of nested case-control studies, the negative correlation between focus on a procedure/intervention and true case-control studies was strengthened (OR 0.053, 95% CI 0.0064–0.44). There was a trend toward a negative association between the use of survival analysis or Kaplan-Meier curves and true case-control studies (OR 0.13, 95% CI 0.015–1.12). True case-control studies were no more likely than their counterparts to use a potential study design “expert” (OR 1.50, 95% CI 0.57–3.95). The overall average STROBE score was 72% (range 50–86%). Examples of reporting deficiencies were reporting of bias (28%), missing data (55%), and funding (44%).

Conclusions

The results of this analysis show that the majority of studies in the neurosurgical literature that identify themselves as “case-control” studies are, in fact, labeled incorrectly. Positive and negative predictors were identified. The authors provide several recommendations that may reverse the incorrect and inappropriate use of the term “case-control” and improve the quality of design and reporting of true case-control studies in neurosurgery.

Free access

Lissa C. Baird, Catherine A. Mazzola, Kurtis I. Auguste, Paul Klimo Jr. and Ann Marie Flannery

Object

The objective of this systematic review was to examine the existing literature to compare differing shunt components used to treat hydrocephalus in children, find whether there is a superior shunt design for the treatment of pediatric hydrocephalus, and make evidence-based recommendations for the selection of shunt implants when placing shunts.

Methods

Both the US National Library of Medicine PubMed/MEDLINE database and the Cochrane Database of Systematic Reviews were queried using MeSH headings and key words chosen to identify publications comparing the use of shunt implant components. Abstracts of these publications were reviewed, after which studies meeting the inclusion criteria were selected. An evidentiary table was compiled summarizing the selected articles and quality of evidence. These data were then analyzed by the Pediatric Hydrocephalus Systematic Review and Evidence-Based Guidelines Task Force to consider evidence-based treatment recommendations.

Results

Two hundred sixty-nine articles were identified using the search parameters, and 43 articles were recalled for full-text review. Of these, 22 papers met the study criteria for a comparison of shunt components and were included in the evidentiary table. The included studies consisted of 1 Class I study, 11 Class II studies, and 10 Class III studies. The remaining 21 articles were excluded.

Conclusions

An analysis of the evidence did not demonstrate a clear advantage for any specific shunt component, mechanism, or valve design over another.

Recommendation: There is insufficient evidence to demonstrate an advantage for one shunt hardware design over another in the treatment of pediatric hydrocephalus. Current designs described in the evidentiary tables are all treatment options. Strength of Recommendation: Level I, high degree of clinical certainty.

Recommendation: There is insufficient evidence to recommend the use of a programmable valve versus a nonprogrammable valve. Programmable and nonprogrammable valves are both options for the treatment of pediatric hydrocephalus. Strength of Recommendation: Level II, moderate degree of clinical certainty.