Search Results

You are looking at 21 - 27 of 27 items for

  • Author or Editor: Ryszard M. Pluta x
Clear All Modify Search
Restricted access

Ramin Rak, Daniel L. Chao, Ryszard M. Pluta, James B. Mitchell, Edward H. Oldfield and Joe C. Watson

Object. The use of thrombolytic agents in the treatment of stroke has yielded surprisingly modest success, possibly because of reperfusion injury mediated by reactive oxygen species (ROS). Therefore, scavenging ROS may be of therapeutic value in the treatment of stroke. Nitroxides are low-weight superoxide dismutase mimics, which allows them to act as cell-permeable antioxidants. In this study the nitroxide 4-hydroxy-2,2,6,6,-tetramethylpiperidine-1-oxyl (Tempol) is investigated to determine its ability to reduce reperfusion injury.

Methods. Male Sprague—Dawley rats weighing between 280 g and 350 g underwent middle cerebral artery occlusion with an intraluminal suture for 60 minutes. Regional cerebral blood flow, blood pressure, cerebral temperature, and rectal temperature were monitored during the procedure. After reperfusion, the animals were randomized to groups receiving blinded intravenous administration of either Tempol (10 mg/kg; eight animals) or vehicle (eight animals) over the first 20 minutes of reperfusion (Study I). In a second study to determine dose dependency, animals were randomized to groups receiving Tempol (20 mg/kg; eight animals), low-dose Tempol (5 mg/kg; eight animals), or vehicle (eight animals; Study II). The rats were killed after 4 hours of reperfusion, and brain sections were stained with 2,3,5 triphenyltetrazolium chloride. Infarct volumes were measured using digital imaging.

Animals receiving Tempol had significantly reduced infarct volumes at doses of 20 mg/kg and 10 mg/kg compared with controls (49.01 ± 18.22% reduction [p = 0.003] and 47.47 ± 34.57 [p = 0.02], respectively). No significant differences in the physiological variables measured were observed between groups.

Conclusions. Tempol provides significant neuroprotection after reperfusion in a rat model of transient focal ischemia. These results support the importance of ROS in reperfusion injury and encourage further study of this molecule as a therapeutic agent following thrombolysis.

Restricted access

Ryszard M. Pluta, Carla S. Jung, Judith Harvey-White, Anne Whitehead, Sabrina Shilad, Michael G. Espey and Edward H. Oldfield

Object. Increased cerebrospinal fluid (CSF) levels of asymmetric dimethyl l-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are associated with delayed vasospasm after subarachnoid hemorrhage (SAH); however, the source, cellular mechanisms, and pharmacological inhibition of ADMA production following SAH are unknown.

Methods. In an in vitro experiment involving human umbilical vein endothelial cells (HUVECs), the authors examined mechanisms potentially responsible for increased ADMA levels during vasospasm and investigated whether this increase can be inhibited pharmacologically. In a second study, an in vivo experiment, the authors used probucol, which effectively inhibited ADMA increase in HUVEC cultures in vitro, in a randomized double-blind placebo-controlled experiment in a primate model of delayed cerebral vasospasm after SAH.

Oxidized low-density lipids (OxLDLs; positive control; p < 0.02) and bilirubin oxidation products (BOXes; p < 0.01), but not oxyhemoglobin (p = 0.74), increased ADMA levels in HUVECs. Probucol inhibited changes in ADMA levels evoked by either OxLDLs (p < 0.001) or BOXes (p < 0.01). Comparable changes were observed in cell lysates. In vivo probucol (100 mg/kg by mouth daily) did not alter serum ADMA levels on Days 7, 14, and 21 after SAH compared with levels before SAH, and these levels were not different from those observed in the placebo group (p = 0.3). Despite achieving therapeutic levels in plasma and measurable levels in CSF, probucol neither prevented increased CSF ADMA levels nor the development of vasospasm after SAH. Increased CSF ADMA and decreased nitrite levels in both groups were strongly associated with the degree of delayed vasospasm after SAH (correlation coefficient [CC] 0.5, 95% confidence interval [CI] 0.19–0.72, p < 0.002 and CC −0.43, 95% CI −0.7 to < 0.05, p < 0.03, respectively).

Conclusions. Bilirubin oxidation products, but not oxyhemoglobin, increased ADMA levels in the HUVEC. Despite its in vitro ability to lower ADMA levels, probucol failed to inhibit increased CSF ADMA and decreased nitrite levels, and it did not prevent delayed vasospasm in a primate SAH model.

Restricted access

Ryszard M. Pluta, John K. B. Afshar, B. Gregory Thompson, Robert J. Boock, Judith Harvey-White and Edward H. Oldfield

Object. The reduction in the level of nitric oxide (NO) is a purported mechanism of delayed vasospasm after subarachnoid hemorrhage (SAH). Evidence in support of a causative role for NO includes the disappearance of nitric oxide synthase (NOS) from the adventitia of vessels in spasm, the destruction of NO by hemoglobin released from the clot into the subarachnoid space, and reversal of vasospasm by intracarotid NO. The authors sought to establish whether administration of l-arginine, the substrate of the NO-producing enzyme NOS, would reverse and/or prevent vasospasm in a primate model of SAH.

Methods. The study was composed of two sets of experiments: one in which l-arginine was infused over a brief period into the carotid artery of monkeys with vasospasm, and the other in which l-arginine was intravenously infused into monkeys over a longer period of time starting at onset of SAH. In the short-term infusion experiment, the effect of a 3-minute intracarotid infusion of l-arginine (intracarotid concentration 10−6 M) on the degree of vasospasm of the right middle cerebral artery (MCA) and on regional cerebral blood flow (rCBF) was examined in five cynomolgus monkeys. In the long-term infusion experiment, the effect of a 14-day intravenous infusion of saline (control group, five animals) or l-arginine (10−3 M; six animals) on the occurrence and degree of cerebral vasospasm was examined in monkeys. The degree of vasospasm in all experiments was assessed by cerebral arteriography, which was performed preoperatively and on postoperative Days 7 (short and long-term infusion experiments) and 14 (long-term infusion experiment). In the long-term infusion experiment, plasma levels of l-arginine were measured at these times in the monkeys to confirm l-arginine availability.

Vasospasm was not affected by the intracarotid infusion of l-arginine (shown by the reduction in the right MCA area on an anteroposterior arteriogram compared with preoperative values). However, intracarotid l-arginine infusion increased rCBF by 21% (p < 0.015; PCO2 38–42 mm Hg) in all vasospastic monkeys compared with rCBF measured during the saline infusions. In the long-term infusion experiment, vasospasm of the right MCA occurred with similar intensity with or without continuous intravenous administration of l-arginine on Day 7 and had resolved by Day 14. The mean plasma l-arginine level increased during infusion from 12.7 ± 4 µg/ml on Day 0 to 21.9 ± 13.1 µg/ml on Day 7 and was 18.5 ± 3.1 µg/ml on Day 14 (p < 0.05).

Conclusions. Brief intracarotid and continuous intravenous infusion of l-arginine did not influence the incidence or degree of cerebral vasospasm. After SAH, intracarotid infusion of l-arginine markedly increased rCBF in a primate model of SAH. These findings discourage the use of l-arginine as a treatment for vasospasm after SAH.

Restricted access

R. Bryan Mason, Ryszard M. Pluta, Stuart Walbridge, David A. Wink, Edward H. Oldfield and Robert J. Boock

Object. Thrombolytic treatments for ischemic stroke can restore circulation, but reperfusion injury, mediated by oxygen free radicals, can limit their utility. The authors hypothesized that, during reperfusion, nitric oxide (NO) provides cytoprotection against oxygen free radical species.

Methods. Levels of NO and oxygen free radicals were determined in both reoxygenation in vitro and reperfusion in vivo models using an NO electrochemical probe and high-performance liquid chromatography with the 2,3- and 2,5-dihydroxybenzoic acid trapping method, before and after addition of the NO donor diethanolamine nitric oxide (DEA/NO).

Reoxygenation after anoxia produced a twofold increase in NO release by human fetal astrocytes and cerebral endothelial cells (p < 0.005). In both cell lines, there was also a two- to threefold increase in oxygen free radical production (p < 0.005). In human fetal astrocytes and cerebral endothelial cells given a single dose of DEA/NO, free radical production dropped fivefold compared with peak ischemic levels (p < 0.001). In a study in which a rat global cerebral ischemia model was used, NO production in a vehicle-treated group increased 48 ± 16% above baseline levels after reperfusion. After intravenous DEA/NO infusion, NO reached 1.6 times the concentration of the postischemic peak in vehicle-treated animals. In vehicle-treated animals during reperfusion, free radical production increased 4.5-fold over basal levels (p < 0.01). After intravenous DEA/NO infusion, free radical production dropped nearly 10-fold compared with peak levels in vehicle-treated animals (p < 0.006). The infarct volume in the vehicle-treated animals was 111 ± 16.9 mm3; after DEA/NO infusion it was 64.8 ± 23.4 mm3 (p < 0.01).

Conclusions. The beneficial effect of early restoration of cerebral circulation after cerebral ischemia is limited by reperfusion injury. These results indicate that NO release and oxygen free radical production increase during reperfusion, and suggest a possible early treatment of reperfusion injury using NO donors.

Restricted access

Astrid Weyerbrock, Stuart Walbridge, Ryszard M. Pluta, Joseph E. Saavedra, Larry K. Keefer and Edward H. Oldfield

Object. The response of brain tumors to systemic chemotherapy is limited by the blood—tumor barrier (BTB). Nitric oxide (NO) has been implicated in the regulation of vascular permeability and blood flow. The authors evaluated the effects of exogenous NO, which was released from a short-acting NO donor (Proli/NO), and those of NO metabolites on the capillary permeability of tumors and normal brain tissue by using quantitative autoradiography in a C6 glioma model in rats.

Methods. The Proli/NO was infused at a wide dose range (10−2 to 10−12 M) either intravenously or into the internal carotid artery (ICA) and demonstrated substantial tumor-selective increases in blood-brain barrier (BBB) permeability in response to various-sized tracers ([14C]aminoisobutyric acid, [14C]sucrose, [14C]dextran). Internal carotid artery or intravenous administration of sodium nitrite had a comparable effect on BTB permeability. The NO effect on microvascular permeability could be obtained without causing hemodynamic side effects. The effect of NO on the efficacy of carboplatin chemotherapy was investigated in intracerebral C6 gliomas. Simultaneous intravenous infusions of Proli/NO (10−6 M) and carboplatin (20 mg/kg) led to long-term survival in 40% of rats harboring intracerebral C6 gliomas compared with control animals receiving ICA or intravenous infusions of carboplatin, Proli/NO, or vehicle alone. No residual tumor was demonstrated on histological or magnetic resonance imaging studies performed in rats treated with Proli/NO and carboplatin, and no toxicity was observed.

Conclusions. This new approach demonstrated the in vivo efficacy and safety of NO and nitrite in enhancing the delivery of systemically delivered radiolabeled tracers and carboplatin into rat gliomas. The NO-induced tumor-selective BBB disruption and intravenous carboplatin chemotherapy may be more efficacious than current chemotherapy strategies against brain tumors.

Restricted access

Carla S. Jung, Edward H. Oldfield, Judith Harvey-White, Michael G. Espey, Michael Zimmermann, Volker Seifert and Ryszard M. Pluta

Object

Delayed cerebral vasospasm after subarachnoid hemorrhage (SAH) may be evoked by the decreased availability of nitric oxide (NO). Increased cerebrospinal fluid (CSF) levels of asymmetric dimethyl-l-arginine (ADMA), an endogenous inhibitor of NO synthase (NOS), have been associated with the course and degree of cerebral vasospasm in a primate model of SAH. In this study, the authors sought to determine if similar changes in CSF ADMA levels are observed in patients with SAH, and whether these changes are associated with NO and NOS metabolite levels in the CSF and the presence of cerebral vasospasm.

Methods

Asymmetric dimethyl-l-arginine, l-arginine, l-citrulline, and nitrite levels were measured in CSF and serum samples collected during the 21-day period after a single aneurysmal SAH in 18 consecutive patients. Samples were also obtained in a control group consisting of seven patients with Chiari malformation Type I and five patients with spontaneous intracerebral hemorrhage without SAH. Vasospasm, defined as a greater than 11% reduction in the anterior circulation vessel diameter ratio compared with the ratio calculated from the initial arteriogram, was assessed on cerebral arteriography performed around Day 7.

Results

In 13 patients with SAH, arteriographic cerebral vasospasm developed. Cerebrospinal fluid ADMA levels in patients with SAH were higher than in those in the control group (p < 0.001). The CSF ADMA level remained unchanged in the five patients with SAH without vasospasm, but was significantly increased in patients with vasospasm after Day 3 (6.2 ± 1.7 μM) peaking during Days 7 through 9 (13.3 ± 6.7 μM; p < 0.001) and then gradually decreasing between Days 12 and 21 (8.8 ± 3.2 μM; p < 0.05). Nitrite levels in the CSF were lower in patients with vasospasm compared to patients without vasospasm (p < 0.03). Cerebrospinal fluid ADMA levels positively correlated with the degree of vasospasm (correlation coefficient [CC] = 0.88, p = 0.0001; 95% confidence interval [CI] 0.74–0.95) and negatively correlated with CSF nitrite levels (CC = −0.55; p = 0.017; 95% CI −0.81 to −0.12).

Conclusions

These results support the hypothesis that ADMA is involved in the progression of cerebral vasospasm. Asymmetric dimethyl-l-arginine and its metabolizing enzymes may be a future target for treatment of cerebral vasospasm after SAH.

Full access

Angelika Ehlert, Christoph Schmidt, Johannes Wölfer, Gerd Manthei, Andreas H. Jacobs, Roland Brüning, Walter Heindel, E. Bernd Ringelstein, Walter Stummer, Ryszard M. Pluta and Volker Hesselmann

OBJECT

Delayed ischemic neurological deficits (DINDs) and cerebral vasospasm (CVS) are responsible fora poor outcome in patients with aneurysmal subarachnoid hemorrhage (SAH), most likely because of a decreased availability of nitric oxide (NO) in the cerebral microcirculation. In this study, the authors examined the effects of treatment with the NO donor molsidomine with regard to decreasing the incidence of spasm-related delayed brain infarctions and improving clinical outcome in patients with SAH.

METHODS

Seventy-four patients with spontaneous aneurysmal SAH were included in this post hoc analysis. Twenty-nine patients with SAH and proven CVS received molsidomine in addition to oral or intravenous nimodipine. Control groups consisted of 25 SAH patients with proven vasospasm and 20 SAH patients without. These patients received nimodipine therapy alone. Cranial computed tomography (CCT) before and after treatment was analyzed for CVS-related infarcts. A modified National Institutes of Health Stroke Scale (mNIHSS) and the modified Rankin Scale (mRS) were used to assess outcomes at a 3-month clinical follow-up.

RESULTS

Four of the 29 (13.8%) patients receiving molsidomine plus nimodipine and 22 of the 45 (48%) patients receiving nimodipine therapy alone developed vasospasm-associated brain infarcts (p < 0.01). Follow-up revealed a median mNIHSS score of 3.0 and a median mRS score of 2.5 in the molsidomine group compared with scores of 11.5 and 5.0, respectively, in the nimodipine group with CVS (p < 0.001). One patient in the molsidomine treatment group died, and 12 patients in the standard care group died (p < 0.01).

CONCLUSIONS

In this post hoc analysis, patients with CVS who were treated with intravenous molsidomine had a significant improvement in clinical outcome and less cerebral infarction. Molsidomine offers a promising therapeutic option in patients with severe SAH and CVS and should be assessed in a prospective study.