Search Results

You are looking at 21 - 30 of 32 items for

  • Author or Editor: John A. Butman x
Clear All Modify Search
Restricted access

John D. Heiss, Stuart Walbridge, Paul Morrison, Robert R. Hampton, Susumu Sato, Alexander Vortmeyer, John A. Butman, James O'Malley, Param Vidwan, Robert L. Dedrick and Edward H. Oldfield

Object. The activity of γ-aminobutyric acid (GABA), the principal inhibitory neurotransmitter, is reduced in the hippocampus in patients with complex partial seizures from mesial temporal sclerosis. To provide preliminary safety and distribution data on using convection-enhanced delivery of agents to treat complex partial seizures and to test the efficacy and safety of regional selective neuronal suppression, the authors infused muscimol, a GABA-A receptor agonist, directly into the hippocampus of nonhuman primates using an integrated catheter electrode.

Methods. Ten rhesus monkeys were divided into three groups: 1) use of catheter electrode alone (four monkeys); 2) infusion of escalating concentrations of muscimol followed by vehicle (three monkeys); and 3) infusion of vehicle and subsequent muscimol mixed with muscimol tracer (three monkeys). Infusions were begun 5 days after catheter electrode placement and continued for 5.6 days before switching to the other agent. Head magnetic resonance (MR) images and electroencephalography recordings were obtained before and during the infusions. Brain histological studies and quantitative autoradiography were performed.

Neurological function was normal in controls and when muscimol concentrations were 0.125 mM or less, whereas higher concentrations (0.5 and 1 mM) produced reversible apathy and somnolence. Fluid distribution was demonstrated on MR images and muscimol distribution was demonstrated on autoradiographs throughout the hippocampus and adjacent white matter.

Conclusions. Targeted modulation of neuronal activity is a reasonable research strategy for the investigation and treatment of medically intractable epilepsy.

Restricted access

Russell R. Lonser, Stuart Walbridge, Kayhan Garmestani, John A. Butman, Hugh A. Walters, Alexander O. Vortmeyer, Paul F. Morrison, Martin W. Brechbiel and Edward H. Oldfield

Object. Intrinsic disease processes of the brainstem (gliomas, neurodegenerative disease, and others) have remained difficult or impossible to treat effectively because of limited drug penetration across the blood—brainstem barrier with conventional delivery methods. The authors used convection-enhanced delivery (CED) of a macromolecular tracer visible on magnetic resonance (MR) imaging to examine the utility of CED for safe perfusion of the brainstem.

Methods. Three primates (Macaca mulatta) underwent CED of various volumes of infusion ([Vis]; 85, 110, and 120 µl) of Gd-bound albumin (72 kD) in the pontine region of the brainstem during serial MR imaging. Infusate volume of distribution (Vd), homogeneity, and anatomical distribution were visualized and quantified using MR imaging. Neurological function was observed and recorded up to 35 days postinfusion. Histological analysis was performed in all animals. Large regions of the pons and midbrain were successfully and safely perfused with the macromolecular protein. The Vd was linearly proportional to the Vi (R2 = 0.94), with a Vd/Vi ratio of 8.7 ± 1.2 (mean ± standard deviation). Furthermore, the concentration across the perfused region was homogeneous. The Vd increased slightly at 24 hours after completion of the infusion, and remained larger until the intensity of infusion faded (by Day 7). No animal exhibited a neurological deficit after infusion. Histological analysis revealed normal tissue architecture and minimal gliosis that was limited to the region immediately surrounding the cannula track.

Conclusions. First, CED can be used to perfuse the brainstem safely and effectively with macromolecules. Second, a large-molecular-weight imaging tracer can be used successfully to deliver, monitor in vivo, and control the distribution of small- and large-molecular-weight putative therapeutic agents for treatment of intrinsic brainstem processes.

Restricted access

H. Jeffrey Kim, John A. Butman, Carmen Brewer, Christopher Zalewski, Alexander O. Vortmeyer, Gladys Glenn, Edward H. Oldfield and Russell R. Lonser

Object. Endolymphatic sac tumors (ELSTs), which often are associated with von Hippel—Lindau (VHL) disease, cause irreversible hearing loss and vestibulopathy. Clinical and imaging surveillance protocols provide new insights into the natural history, mechanisms of symptom formation, and indications for the treatment of ELSTs. To clarify the uncertainties associated with the pathophysiology and treatment of ELSTs, the authors describe a series of patients with VHL disease in whom serial examinations recorded the development of ELSTs.

Methods. Patients with VHL disease were included if serial clinical and imaging studies captured the development of ELSTs, and the patients underwent tumor resection. The patients' clinical, audiological, and imaging characteristics as well as their operative results were analyzed.

Five consecutive patients (three men and two women) with a mean age at surgery of 34.8 years and a follow-up period of 6 to 18 months were included in this study. Audiovestibular symptoms were present in three patients before a tumor was evident on neuroimaging. Imaging evidence of an intralabyrinthine hemorrhage coincided with a loss of hearing in three patients. Successful resection of the ELSTs was accomplished by performing a retrolabyrinthine posterior petrosectomy (RLPP). Hearing stabilized and vestibular symptoms resolved after surgery in all patients. No patient has experienced a recurrence.

Conclusions. Audiovestibular symptoms, including hearing loss, in patients with VHL disease can be the result of microscopic ELSTs. Once an ELST has been detected, it can be completely resected via an RLPP with preservation of hearing and amelioration of vestibular symptoms. Early detection and surgical treatment of small ELSTs, when hearing is still present, should reduce the incidence and severity of hearing loss, tinnitus, vertigo, and cranial nerve dysfunction, which are associated with these tumors.

Restricted access

Jay Jagannathan, John A. Butman, Russell R. Lonser, Alexander O. Vortmeyer, Christopher K. Zalewski, Carmen Brewer, Edward H. Oldfield and H. Jeffrey Kim

✓ Endolymphatic sac tumors (ELSTs) are locally invasive neoplasms that arise in the posterior petrous bone and are associated with von Hippel–Lindau (VHL) disease. These tumors cause symptoms even when microscopic in size (below the threshold for detectability on imaging studies) and can lead to symptoms such as hearing loss, tinnitus, vertigo, and facial nerve dysfunction. While the mechanisms of audiovestibular dysfunction in patients harboring ELSTs are incompletely understood, they have critical implications for management. The authors present the case of a 33-year-old man with VHL disease and a 10-year history of progressive tinnitus, vertigo, and left-sided hearing loss. Serial T1-weighted magnetic resonance (MR) imaging and computed tomography scans revealed no evidence of tumor, but fluid attenuated inversion recovery (FLAIR) MR imaging sequences obtained after hearing loss demonstrated evidence of left intralabyrinthine hemorrhage. On the basis of progressive disabling audiovestibular dysfunction (tinnitus and vertigo), FLAIR imaging findings, and VHL disease status, the patient underwent surgical exploration of the posterior petrous region, and a small (2-mm) ELST was identified and completely resected. Postoperatively, the patient had improvement of the tinnitus and vertigo. Intralabyrinthine hemorrhage may be an early and the only neuroimaging sign of an ELST in patients with VHL disease and audiovestibular dysfunction. These findings support tumor-associated hemorrhage as a mechanism underlying the audiovestibular dysfunction associated with ELSTs.

Restricted access

Gregory J. A. Murad, Stuart Walbridge, Paul F. Morrison, Nicholas Szerlip, John A. Butman, Edward H. Oldfield and Russell R. Lonser

Object

To determine if the potent antiglioma chemotherapeutic agent gemcitabine could be delivered to the brainstem safely at therapeutic doses while monitoring its distribution using a surrogate magnetic resonance (MR) imaging tracer, the authors used convection-enhanced delivery to perfuse the primate brainstem with gemcitabine and Gd–diethylenetriamine pentaacetic acid (DTPA).

Methods

Six primates underwent convective brainstem perfusion with gemcitabine (0.4 mg/ml; two animals), Gd-DTPA (5 mM; two animals), or a coinfusion of gemcitabine (0.4 mg/ml) and Gd-DTPA (5 mM; two animals), and were killed 28 days afterward. These primates were observed over time clinically (six animals), and with MR imaging (five animals), quantitative autoradiography (one animal), and histological analysis (all animals). In an additional primate, 3H-gemcitabine and Gd-DTPA were coinfused and the animal was killed immediately afterward.

In the primates there was no histological evidence of infusate-related tissue toxicity. Magnetic resonance images obtained during infusate delivery demonstrated that the anatomical region infused with Gd-DTPA was clearly distinguishable from surrounding noninfused tissue. Quantitative autoradiography confirmed that Gd-DTPA tracked the distribution of 3H-gemcitabine and closely approximated its volume of distribution (mean volume of distribution difference 13.5%).

Conclusions

Gemcitabine can be delivered safely and effectively to the primate brainstem at therapeutic concentrations and at volumes that are higher than those considered clinically relevant. Moreover, MR imaging can be used to track the distribution of gemcitabine by adding Gd-DTPA to the infusate. This delivery paradigm should allow for direct therapeutic application of gemcitabine to brainstem gliomas while monitoring its distribution to ensure effective tumor coverage and to maximize safety.

Full access

H. Jeffrey Kim, John A. Butman, Brewer Carmen, Christopher Zalewski, Alexander O. Vortmeyer, Gladys Glenn, Edward H. Oldfield and Russell R. Lonser

Object

Endolymphatic sac tumors (ELSTs), which often are associated with von Hippel–Lindau (VHL) disease, cause irreversible hearing loss and vestibulopathy. Clinical and imaging surveillance protocols provide new insights into the natural history, mechanisms of symptom formation, and indications for the treatment of ELSTs. To clarify the uncertainties associated with the pathophysiology and treatment of ELSTs, the authors describe a series of patients with VHL disease in whom serial examinations recorded the development of ELSTs.

Methods

Patients with VHL disease were included if serial clinical and imaging studies captured the development of ELSTs, and the patients underwent tumor resection. The patients' clinical, audiological, and imaging characteristics as well as their operative results were analyzed.

Five consecutive patients (three men and two women) with a mean age at surgery of 34.8 years and a follow-up period of 6 to 18 months were included in this study. Audiovestibular symptoms were present in three patients before a tumor was evident on neuroimaging. Imaging evidence of an intralabyrinthine hemorrhage coincided with a loss of hearing in three patients. Successful resection of the ELSTs was accomplished by performing a retrolabyrinthine posterior petrosectomy (RLPP). Hearing stabilized and vestibular symptoms resolved after surgery in all patients. No patient has experienced a recurrence.

Conclusions

Audiovestibular symptoms, including hearing loss, in patients with VHL disease can be the result of microscopic ELSTs. Once an ELST has been detected, it can be completely resected via an RLPP with preservation of hearing and amelioration of vestibular symptoms. Early detection and surgical treatment of small ELSTs, when hearing is still present, should reduce the incidence and severity of hearing loss, tinnitus, vertigo, and cranial nerve dysfunction, which are associated with these tumors.

Free access

Russell R. Lonser, John A. Butman, Kristin Huntoon, Ashok R. Asthagiri, Tianxia Wu, Kamran D. Bakhtian, Emily Y. Chew, Zhengping Zhuang, W. Marston Linehan and Edward H. Oldfield

Object

The tumors most frequently associated with von Hippel-Lindau (VHL) disease are hemangioblastomas. While they are associated with significant neurological impairment and mortality, their natural history and optimal management have not been fully defined.

Methods

Patients with VHL were enrolled in a prospective study designed to define the natural history of CNS hemangioblastomas. In the present analysis, serial imaging, laboratory, genetic, and clinical data were evaluated in those with at least 2 years of follow-up data.

Results

At study entrance 225 patients (111 males, 114 females) harbored 1921 CNS hemangioblastomas in the supratentorial compartment (21 tumors [1%]), cerebellum (865 [45%]), brainstem (129 [7%]), spinal cord (689 [36%]), cauda equina (212 [11%]), and nerve roots (5 [0.3%]; follow-up 15,819 hemangioblastoma-years). Increased tumor burden was associated with partial deletions in the VHL gene (p = 0.005) and male sex (p = 0.002). Hemangioblastoma development (median 0.3 new tumors/year) was associated with younger age (p < 0.0001) and more tumors at study entrance (p < 0.0001). While 1278 hemangioblastomas (51%) did not grow, 1227 hemangioblastomas (49%) grew in a saltatory (886 [72%]), linear (76 [6%]), or exponential (264 [22%]) pattern. Faster tumor growth was associated with male sex (p = 0.001), symptomatic tumors (p < 0.0001), and tumors associated with cysts (p < 0.0001). Location-dependent tumor size was the primary predictor of eventual symptom formation (159 symptomatic tumors [6.3%]; area under the curve > 0.9).

Conclusions

Central nervous system hemangioblastoma burden in VHL is associated with partial germline deletions and male sex. Unpredictable growth of hemangioblastomas compromises assessment of nonsurgical therapies. The judicious treatment of symptom-producing hemangioblastomas, while avoiding unnecessary treatment of asymptomatic tumors that may not progress, can provide clinical stability. Clinical trial registration no.: NCT00005902 (ClinicalTrials.gov).

Full access

Kristin Huntoon, Tianxia Wu, J. Bradley Elder, John A. Butman, Emily Y. Chew, W. Marston Linehan, Edward H. Oldfield and Russell R. Lonser

OBJECT

Peritumoral cysts are frequently associated with CNS hemangioblastomas and often underlie neurological morbidity and mortality. To determine their natural history and clinical impact, the authors prospectively analyzed hemangioblastoma-associated peritumoral cysts in patients with von Hippel-Lindau (VHL) disease.

METHODS

Patients with VHL disease who had 2 or more years of follow-up and who were enrolled in a prospective study at the National Institutes of Health were included. Serial prospectively acquired laboratory, genetic, imaging, and clinical data were analyzed.

RESULTS

One hundred thirty-two patients (of 225 in the VHL study with at least 2 years of follow-up) had peritumoral cysts that were followed for more than 2 years (total of 292 CNS peritumoral cysts). The mean age at study entrance was 37.4 ± 13.1 years ([mean ± SD], median 37.9, range 12.3–65.1 years). The mean follow-up was 7.0 ± 1.7 years (median 7.3, range 2.1–9.0 years). Over the study period, 121 of the 292 peritumoral cysts (41.4%) became symptomatic. Development of new cysts was associated with a larger number cysts at study enrollment (p = 0.002) and younger age (p < 0.0001). Cyst growth rate was associated with anatomical location (cerebellum cysts grew faster than spine and brainstem cysts; p = 0.0002 and p = 0.0008), younger age (< 35 years of age; p = 0.0006), and development of new neurological symptoms (p < 0.0001). Cyst size at symptom production depended on anatomical location (p < 0.0001; largest to smallest were found, successively, in the cerebellum, spinal cord, and brainstem). The most common location for peritumoral cysts was the cerebellum (184 cysts [63%]; p < 0.0001).

CONCLUSIONS

Peritumoral cysts frequently underlie symptom formation that requires surgical intervention in patients with VHL disease. Development of new cysts was associated with a larger number of cysts at study enrollment and younger age. Total peritumoral cyst burden was associated with germline partial deletion of the VHL gene.

Full access

Prashant Chittiboina, S. Lalith Talagala, Hellmut Merkle, Joelle E. Sarlls, Blake K. Montgomery, Martin G. Piazza, Gretchen Scott, Abhik Ray-Chaudhury, Russell R. Lonser, Edward H. Oldfield, Alan P. Koretsky and John A. Butman

OBJECTIVE

Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed.

METHODS

Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra–high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm3 and 0.15 × 0.15 × 0.30 mm3, respectively.

RESULTS

Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections.

CONCLUSIONS

ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary adenomas and identify microscopic invasion of the dura or cavernous sinus.