Search Results

You are looking at 21 - 30 of 221 items for

  • Author or Editor: Christopher Michael x
Clear All Modify Search
Full access

Michael J. Rauzzino, Christopher I. Shaffrey, Russ P. Nockels, Gregory C. Wiggins, Jack Rock and James Wagner

The authors report their experience with 42 patients in whom anterior lumbar fusion was performed using titanium cages as a versatile adjunct to treat a wide variety of spinal deformity and pathological conditions. These conditions included congenital, degenerative, iatrogenic, infectious, traumatic, and malignant disorders of the thoracolumbar spine. Fusion rates and complications are compared with data previously reported in the literature.

Between July 1996 and July 1999 the senior authors (C.I.S., R.P.N., and M.J.R.) treated 42 patients by means of a transabdominal extraperitoneal (13 cases) or an anterolateral extraperitoneal approach (29 cases), 51 vertebral levels were fused using titanium cages packed with autologous bone. All vertebrectomies (27 cases) were reconstructed using a Miami Moss titanium mesh cage and Kaneda instrumentation. Interbody fusion (15 cases) was performed with either the BAK titanium threaded interbody cage (in 13 patients) or a Miami Moss titanium mesh cage (in two patients). The average follow-up period was 14.3 months. Seventeen patients had sustained a thoracolumbar burst fracture, 12 patients presented with degenerative spinal disorders, six with metastatic tumor, four with spinal deformity (one congenital and three iatrogenic), and three patients presented with spinal infections. In five patients anterior lumbar interbody fusion (ALIF) was supplemented with posterior segmental fixation at the time of the initial procedure. Of the 51 vertebral levels treated, solid arthrodesis was achieved in 49, a 96% fusion rate. One case of pseudarthrosis occurred in the group treated with BAK cages; the diagnosis was made based on the patient's continued mechanical back pain after undergoing L4–5 ALIF. The patient was treated with supplemental posterior fixation, and successful fusion occurred uneventfully with resolution of her back pain. In the group in which vertebrectomy was performed there was one case of fusion failure in a patient with metastatic breast cancer who had undergone an L-3 corpectomy with placement of a mesh cage. Although her back pain was immediately resolved, she died of systemic disease 3 months after surgery and before fusion could occur.

Complications related to the anterior approach included two vascular injuries (two left common iliac vein lacerations); one injury to the sympathetic plexus; one case of superficial phlebitis; two cases of prolonged ileus (greater than 48 hours postoperatively); one anterior femoral cutaneous nerve palsy; and one superficial wound infection. No deaths were directly related to the surgical procedure. There were no cases of dural laceration and no nerve root injury. There were no cases of deep venous thrombosis, pulmonary embolus, retrograde ejaculation, abdominal hernia, bowel or ureteral injury, or deep wound infection. Fusion-related complications included an iliac crest hematoma and prolonged donor-site pain in one patient. There were no complications related to placement or migration of the cages, but there was one case of screw fracture of the Kaneda device that did not require revision.

The authors conclude that anterior lumbar fusion performed using titanium interbody or mesh cages, packed with autologous bone, is an effective, safe method to achieve fusion in a wide variety of pathological conditions of the thoracolumbar spine. The fusion rate of 96% compares favorably with results reported in the literature. The complication rate mirrors the low morbidity rate associated with the anterior approach. A detailed study of clinical outcomes is in progress. Patient selection and strategies for avoiding complication are discussed.

Full access

Daniel J. Blizzard, Michael A. Gallizzi, Robert E. Isaacs and Christopher R. Brown

Lateral interbody fusion (LIF) via the retroperitoneal transpsoas approach is an increasingly popular, minimally invasive technique for interbody fusion in the thoracolumbar spine that avoids many of the complications of traditional anterior and transforaminal approaches. Renal vascular injury has been cited as a potential risk in LIF, but little has been documented in the literature regarding the etiology of this injury. The authors discuss a case of an intraoperative complication of renal artery injury during LIF. A 42-year-old woman underwent staged T12–L5 LIF in the left lateral decubitus position, and L5–S1 anterior lumbar interbody fusion, followed 3 days later by T12–S1 posterior instrumentation for idiopathic scoliosis with radiculopathy refractory to conservative management. After placement of the T12–L1 cage, the retractor was released and significant bleeding was encountered during its removal. Immediate consultation with the vascular team was obtained, and hemostasis was achieved with vascular clips. The patient was stabilized, and the remainder of the procedure was performed without complication. On postoperative CT imaging, the patient was found to have a supernumerary left renal artery with complete occlusion of the superior left renal artery, causing infarction of approximately 75% of the kidney. There was no increase in creatinine level immediately postoperatively or at the 3-month follow-up. Renal visceral and vascular injuries are known risks with LIF, with potentially devastating consequences. The retroperitoneal transpsoas approach for LIF in the superior lumbar spine requires a thorough knowledge of renal visceral and vascular anatomy. Supernumerary renal arteries occur in 25%–40% of the population and occur most frequently on the left and superior to the usual renal artery trunk. These arteries can vary in number, position, and course from the aorta and position relative to the usual renal artery trunk. Understanding of renal anatomy and the potential variability of the renal vasculature is essential to prevent iatrogenic injury.

Restricted access

G. Edward Vates, Kevin C. Wang, David Bonovich, Christopher F. Dowd and Michael T. Lawton

✓ Bow hunter stroke, which is characterized by transient vertebrobasilar ischemia brought on by head turning, is an unusual condition usually caused by structural abnormalities at the craniocervical junction. The authors present a case in which compression of the left vertebral artery (VA) at the C4–5 level was caused by a laterally herniated intervertebral disc. A 56-year-old man presented with a 6-month history of dizziness and syncope when he turned his head 45° or more to the left. Transcranial Doppler (TCD) ultrasonography demonstrated decreased blood flow through the left VA, and angiography revealed an occlusion of the left VA at the C4–5 level, both when the patient turned his head to the left. Via an anterior cervical approach, the VA canal was unroofed through the transverse foramina to decompress the left VA at C4–5; intraoperatively, the left VA was found to be compressed by a laterally herniated cervical disc fragment. To the best of the authors' knowledge this is the first report of a laterally herniated cervical disc causing bow hunter stroke. The use of TCD may be of value in the diagnosis and management of the disorder, and herniated cervical disc must be included in the roster of potential causes for this rare disease.

Restricted access

Devon Hoover, Aruna Ganju, Christopher I. Shaffrey, Henry Bartkowski and Michael J. Rauzzino

Restricted access

Michael M. Safaee, Cecilia L. Dalle Ore, Corinna C. Zygourakis, Vedat Deviren and Christopher P. Ames

OBJECTIVE

Bone morphogenetic protein (BMP) is associated with reduced rates of pseudarthrosis and has the potential to decrease the need for revision surgery. There are limited data evaluating the cost-benefit of BMP for pseudarthrosis-related prevention surgery in adult spinal deformity.

METHODS

The authors performed a single-center retrospective review of 200 consecutive patients with adult spinal deformity. Demographic data and costs of BMP, primary surgery, and revision surgery for pseudarthrosis were collected. Patients with less than 12 months of follow-up or with infection, tumor, or neuromuscular disease were excluded.

RESULTS

One hundred fifty-one patients (107 [71%] women) with a mean age of 65 years met the inclusion criteria. The mean number of levels fused was 10; BMP was used in 98 cases (65%), and the mean follow-up was 23 months. Fifteen patients (10%) underwent surgical revision for pseudarthrosis; BMP use was associated with an 11% absolute risk reduction in the rate of reoperation (17% vs 6%, p = 0.033), with a number needed to treat of 9.2. There were no significant differences in age, sex, upper instrumented vertebra, or number of levels fused in patients who received BMP. In a multivariate model including age, sex, number of levels fused, and the upper instrumented vertebra, only BMP (OR 0.250, 95% CI 0.078–0.797; p = 0.019) was associated with revision surgery for pseudarthrosis. The mean direct cost of primary surgery was $87,653 ± $19,879, and the mean direct cost of BMP was $10,444 ± $4607. The mean direct cost of revision surgery was $52,153 ± $26,985. The authors independently varied the efficacy of BMP, cost of BMP, and cost of reoperation by ± 50%; only reductions in the cost of BMP resulted in a cost savings per 100 patients. Using these data, the authors estimated a price point of $5663 in order for BMP to be cost-neutral.

CONCLUSIONS

Use of BMP was associated with a significant reduction in the rates of revision surgery for pseudarthrosis. At its current price, the direct in-hospital costs for BMP exceed the costs associated with revision surgery; however, this likely underestimates the true value of BMP when considering the savings associated with reductions in rehabilitation, therapy, medication, and additional outpatient costs.

Restricted access

Ravikant S. Palur, Caglar Berk, Michael Schulzer and Christopher R. Honey

Object. There is an active debate regarding whether pallidotomy should be performed using macroelectrode stimulation or the more sophisticated and expensive method of microelectrode recording. No prospective, randomized trial results have answered this question, although personnel at many centers claim one method is superior. In their metaanalysis the authors reviewed published reports of both methods to determine if there is a significant difference in clinical outcomes or complication rates associated with these methods.

Methods. A metaanalysis was performed with data from reports on the use of unilateral pallidotomy in patients with Parkinson disease (PD) that were published between 1992 and 2000. A Medline search was conducted for the key word “pallidotomy” and additional studies were added following a review of the references. Only those studies dealing with unilateral procedures performed in patients with PD were included. Papers were excluded if they described a cohort smaller than 10 patients or a follow-up period shorter than 3 months or included cases that previously had been reported. The primary end points for outcome were the percentages of improvement in dyskinesias and in motor scores determined by the Unified PD Rating Scale (UPDRS). Complications were categorized as mortality, intracranial hemorrhage, visual deficit, speech deficit, cognitive decline, weakness, and other.

There were no significant differences between the two methods with respect to improvements in dyskinesias (p = 0.66) or UPDRS motor scores (p = 0.62). Microelectrode recording was associated with a significantly higher (p = 0.012) intracranial hemorrhage rate (1.3 ± 0.4%), compared with macroelectrode stimulation (0.25 ± 0.2%).

Conclusions. In reports of patients with PD who underwent unilateral pallidotomy, operations that included microelectrode recording were associated with a small, but significantly higher rate of symptomatic intracranial hemorrhage; however, there was no difference in postoperative reduction of dyskinesia or bradykinesia compared with operations that included macroelectrode stimulation.

Free access

Time is spine: a review of translational advances in spinal cord injury

JNSPG 75th Anniversary Invited Review Article

Jetan H. Badhiwala, Christopher S. Ahuja and Michael G. Fehlings

Acute traumatic spinal cord injury (SCI) is a devastating event with far-reaching physical, emotional, and economic consequences for patients, families, and society at large. Timely delivery of specialized care has reduced mortality; however, long-term neurological recovery continues to be limited. In recent years, a number of exciting neuroprotective and regenerative strategies have emerged and have come under active investigation in clinical trials, and several more are coming down the translational pipeline. Among ongoing trials are RISCIS (riluzole), INSPIRE (Neuro-Spinal Scaffold), MASC (minocycline), and SPRING (VX-210). Microstructural MRI techniques have improved our ability to image the injured spinal cord at high resolution. This innovation, combined with serum and cerebrospinal fluid (CSF) analysis, holds the promise of providing a quantitative biomarker readout of spinal cord neural tissue injury, which may improve prognostication and facilitate stratification of patients for enrollment into clinical trials. Given evidence of the effectiveness of early surgical decompression and growing recognition of the concept that “time is spine,” infrastructural changes at a systems level are being implemented in many regions around the world to provide a streamlined process for transfer of patients with acute SCI to a specialized unit. With the continued aging of the population, central cord syndrome is soon expected to become the most common form of acute traumatic SCI; characterization of the pathophysiology, natural history, and optimal treatment of these injuries is hence a key public health priority. Collaborative international efforts have led to the development of clinical practice guidelines for traumatic SCI based on robust evaluation of current evidence. The current article provides an in-depth review of progress in SCI, covering the above areas.

Restricted access

David E. Gwinn, Christopher A. Iannotti, Edward C. Benzel and Michael P. Steinmetz

Object

Analysis of cervical sagittal deformity in patients with cervical spondylotic myelopathy (CSM) requires a thorough clinical and radiographic evaluation to select the most appropriate surgical approach. Angular radiographic measurements, which are commonly used to define sagittal deformity, may not be the most appropriate to use for surgical planning. The authors present a simple straight-line method to measure effective spinal canal lordosis and analyze its reliability. Furthermore, comparisons of this measurement to traditional angular measurements of sagittal cervical alignment are made in regards to surgical planning in patients with CSM.

Methods

Twenty preoperative lateral cervical digital radiographs of patients with CSM were analyzed by 3 independent observers on 3 separate occasions using a software measurement program. Sagittal measurements included C2–7 angles utilizing the Cobb and posterior tangent methods, as well as a straight-line method to measure effective spinal canal lordosis from the dorsal-caudal aspect of the C2–7 vertebral bodies. Analysis of variance for repeated measures or Cohen 3-way (kappa) correlation coefficient analysis was performed as appropriate to calculate the intra- and interobserver reliability for each parameter. Discrepancies in angular and effective lordosis measurements were analyzed.

Results

Intra- and interobserver reliability was excellent (intraclass coefficient > 0.75, kappa > 0.90) utilizing all 3 techniques. Four discrepancies between angular and effective lordotic measurements occurred in which images with a lordotic angular measurement did not have lordosis within the ventral spinal canal. These discrepancies were caused by either spondylolisthesis or dorsally projecting osteophytes in all cases.

Conclusions

Although they are reliable, traditional methods used to make angular measurements of sagittal cervical spine alignment do not take into account ventral obstructions to the spinal cord. The effective lordosis measurement method provides a simple and reliable means of determining clinically significant lordosis because it accounts for both overall alignment of the cervical spine as well as impinging structures ventral to the spinal cord. This method should be considered for use in the treatment of patients with CSM.

Free access

C. Michael Honey, Zurab Ivanishvili, Christopher R. Honey and Manraj K. S. Heran

OBJECTIVE

The location of the human spinothalamic tract (STT) in the anterolateral spinal cord has been known for more than a century. The exact nature of the neuronal fiber lamination within the STT, however, remains controversial. After correlating in vivo macrostimulation-induced pain/temperature sensation during percutaneous cervical cordotomy with simultaneous CT imaging of the electrode tip location, the authors present a modern description of the somatotopy of the human cervical STT.

METHODS

Twenty patients underwent CT-guided percutaneous cervical cordotomy to alleviate contralateral medication-refractory cancer pain. Patient responses to electrical stimulation (0.01–0.1 V, 50 Hz, 1 msec) were recorded and the electrode location for each response was documented with a contemporaneous CT scan. In a post hoc analysis of the data, the location for each patient’s response(s) was measured and drawn on a diagram of their cord. Positive responses were represented only when the lowest possible voltage (≤ 0.02 V) elicited a response. Negative responses were recorded if there was no clinical response at 0.1 V.

RESULTS

Clinically, patients did well with an average reduction in opiates of 75% at 1 week, and 67% were able to leave the palliative care unit. The size of the cervical cord varied between patients, with an average lateral extent (width) of 11 mm and a height of 9 mm. Responses from the lower limb were represented superficially (lateral) and posteriorly within the anterolateral cord. The area with responses from the upper limb was larger and surrounded those with responses from the lower limb primarily anteriorly and medially, but also posteriorly.

CONCLUSIONS

In this study, the somatotopic organization of the human STT was elucidated for the first time using in vivo macrostimulation and contemporaneous CT imaging during cordotomy. In this cohort of patients, the STT from the lower-limb region was located superficially and posteriorly in the anterolateral quadrant of the cervical cord, with the STT from the upper-limb region surrounding it primarily anteriorly and medially (deep) but also posteriorly. The authors discuss how the previous methods of cordotomy may have biased the earlier versions of STT lamination. They suggest that an ideal spinal cord entry site for cordotomy of either the upper- or lower-limb pain fibers is halfway between the equator and anterior pole of the cord.