Search Results

You are looking at 21 - 26 of 26 items for

  • Author or Editor: Christopher M. Bonfield x
Clear All Modify Search
Restricted access

Matthew J. Tormenti, Matthew B. Maserati, Christopher M. Bonfield, Peter C. Gerszten, John J. Moossy, Adam S. Kanter, Richard M. Spiro and David O. Okonkwo

Object

Since its original description in 1982, transforaminal lumbar interbody fusion (TLIF) has grown in popularity as a means for achieving circumferential fusion. The authors sought to define the perioperative complication rates of the TLIF procedure at a large academic medical center.

Methods

For all eligible patients from a consecutive series of 531 TLIF procedures, the institution's complication database and the medical record were reviewed to identify complications. Medical, nonprocedure-related complications such as myocardial infarction and pulmonary embolism were excluded due to inconsistency in the recording of these complications in the database. Rates were calculated for each type of complication, and subgroup analysis was performed to investigate the effect of previous lumbar surgery, and of multilevel versus single-level interbody fusion on complication rates. Odds ratios were calculated and evaluated using chi-square analysis.

Results

Five hundred thirty-one patients underwent a TLIF procedure during the study period. Two hundred forty-four patients (46%) had undergone a previous lumbar operation. Interbody fusion was performed at 1 level in 317 patients, at 2 levels in 188 patients, at 3 levels in 24 patients, and at 4 levels in 2 patients. One hundred thirty-five patients (25.4%) had at least one procedure-related complication. The most common complications were durotomy (14.3% of patients) and infection (3.8% of patients). Symptomatic screw misplacement (2.1% of patients) and interbody cage migration (1.8% of patients) were less common complications. The overall complication rate was greater in those patients who had undergone a previous operation (OR 1.75, 95% CI 1.18–2.59; p < 0.01) and in those who had multilevel surgery (OR 1.54, 95 % CI 1.04–2.28; p = 0.03), and the incidence of durotomy was higher in patients who had a previous operation (OR 1.75, 95% CI 1.07–2.87; p = 0.03). These differences were statistically significant. Durotomy also occurred more frequently in patients who had multilevel interbody fusion (OR 1.49, 95% CI 0.92–2.43; p = 0.13). A trend toward higher infection rates in those patients who underwent multilevel interbody fusion was observed (OR 1.5, 95% CI 0.62–3.68; p = 0.49), but this was not statistically significant. Infection rates did not differ between revision and first-time surgeries.

Conclusions

Transforaminal lumbar interbody fusion has gained widespread popularity as a procedure for achieving arthrodesis in the lumbar spine. Complications occurred more often in patients undergoing revision surgery or multilevel interbody fusion. Durotomy and infection were the most common complications in this series.

Full access

Scott L. Zuckerman, Brian Holt Zalneraitis, Douglas J. Totten, Kolin E. Rubel, Andrew W. Kuhn, Aaron M. Yengo-Kahn, Christopher M. Bonfield, Allen K. Sills and Gary S. Solomon

OBJECTIVE

A significant proportion of patients experience long-term symptoms after sport-related concussion (SRC), and several factors have been associated with this protracted recovery. Limited data exist on the role of socioeconomic status (SES) on SRC outcomes. The objective in this study was to conduct a preliminary investigation to determine the effect of SES on outcomes after SRC in student-athletes treated at a regional sports concussion center.

METHODS

A retrospective cohort study of 282 middle school, high school, and collegiate student-athletes was conducted. An attempt was made to contact all patients seen at a comprehensive SRC center between January 2012 and May 2015 for in-depth interviews. Subsequent demographic data were collected. The SES was defined as follows: cost of living percentile, median income percentile, percentage of college graduates, percentage of homeowners, county type, and insurance status. Outcomes after SRC were defined as follows: days of symptom duration, days of missed school, and days of missed practice. Statistically controlled covariates included sex, race, age, body mass index, concussion history, neuropsychiatric history, and type of sport.

RESULTS

A total of 282 student-athletes consented and were studied. The median age was 15.8 years (range 11.6–22.2 years) and 61.4% of student-athletes were male. A previous concussion was incurred by 34.0% of student-athletes. Football was the most common sport (32.3%), followed by soccer (16.3%), and basketball (15.6%). The median symptom duration was 21 days (range 1–365 days); the median missed school days was 2 (range 0–90 days); and median for days of missed practice was 10 (range 0–150 days). After multivariate Cox regression analysis, no relationship between any of the 6 SES variables and symptom duration or missed practice was seen. However, individuals with private insurance had more missed days of school than those with public insurance (hazard ratio 0.46, 95% CI 0.26–0.83, p = 0.009).

CONCLUSIONS

In a preliminary study of middle school, high school, and collegiate student-athletes, SES had no impact on the outcomes of symptom duration and missed practice. However, for individuals with private insurance, the return to school was slower than for those with public insurance. This pilot study reveals the complex relationship between SES and SRC recovery, which demands further study with more accurate and validated assessments of SES.

Restricted access

Jaims Lim, Alan R. Tang, Campbell Liles, Alexander A. Hysong, Andrew T. Hale, Christopher M. Bonfield, Robert P. Naftel, John C. Wellons III and Chevis N. Shannon

OBJECTIVE

Many studies have aimed to determine the most clinically effective surgical intervention for hydrocephalus. However, the costs associated with each treatment option are poorly understood. In this study, the authors conducted a cost-effectiveness analysis, calculating the incremental cost-effectiveness ratio (ICER) of ventriculoperitoneal shunting (VPS), endoscopic third ventriculostomy (ETV), and ETV with choroid plexus cauterization (ETV/CPC) in an effort to better understand the clinical effectiveness and costs associated with treating hydrocephalus.

METHODS

The study cohort includes patients under the age of 18 who were initially treated for hydrocephalus between January 2012 and January 2015 at the authors’ institution. Overall treatment costs were calculated using patient-level hospitalization costs and professional fees reimbursable to the hospital and directly related to the initial and follow-up (postoperative day 1 to 12 months) treatment of hydrocephalus. TreeAge Pro was used to conduct the cost-effectiveness analyses.

RESULTS

A total of 147 patients were identified. Based on the initial intervention for hydrocephalus, their cases were classified as follows: 113 VPS, 14 ETV, and 20 ETV/CPC. During the initial intervention, VPS patients required a longer length of stay at 5.6 days, compared to ETV/CPC (3.35 days) and ETV (2.36 days) patients. Failure rates for all treatment options ranged from 29% to 45%, leading to recurrent hydrocephalus and additional surgical intervention between postoperative day 1 and 12 months. Cost-effectiveness analyses found ETV to be less costly and more clinically effective, with an ICER of $94,797 compared to VPS ($130,839) and ETV/CPC ($126,394). However, when stratified by etiology, VPS was found to be more clinically effective and cost-effective in both the myelomeningocele and posthemorrhagic hydrocephalus patient groups with an incremental cost per clinical unit of effectiveness (success or failure of intervention) of $76,620 compared to ETV and ETV/CPC. However, when assessing cases categorized as “other etiologies,” ETV was found to be more cost-effective per clinical unit, with an ICER of $60,061 compared to ETV/CPC ($93,350) and VPS ($142,135).

CONCLUSIONS

This study is one of the first attempts at quantifying the patient-level hospitalization costs associated with surgical management of hydrocephalus in pediatric patients treated in the United States. The results indicate that the conversation regarding CSF diversion techniques must be patient-specific and consider etiology as well as any previous surgical intervention. Again, these findings are short-run observations, and a long-term follow-up study should be conducted to assess the cost of treating hydrocephalus over the lifetime of a patient.

Full access

Silky Chotai, Bradley S. Guidry, Emily W. Chan, Katherine D. Sborov, Stephen Gannon, Chevis Shannon, Christopher M. Bonfield, John C. Wellons III and Robert P. Naftel

OBJECTIVE

Readmission and return to operating room after surgery are increasingly being used as a proxy for quality of care. Nearly 60% of these readmissions are unplanned, which translates into billions of dollars in health care costs. The authors set out to analyze the incidence of readmission at their center, to define causes of unplanned readmission, and to determine the preoperative and surgical variables associated with readmissions following pediatric neurosurgery.

METHODS

A total of 536 children who underwent operations for neurosurgical diagnoses between 2012 and 2015 and who were later readmitted were included in the final analysis. Unplanned readmissions were defined to have occurred as a result of complications within 90 days after index surgery. Patient records were retrospectively reviewed to determine the primary diagnosis, surgery indication, and cause of readmission and return to operating room. The cost for index hospitalization, readmission episode, and total cost were derived based on the charges obtained from administrative data. Bivariate and multivariable analyses were conducted.

RESULTS

Of 536 patients readmitted in total, 17.9% (n = 96) were readmitted within 90 days. Of the overall readmissions, 11.9% (n = 64) were readmitted within 30 days, and 5.97% (n = 32) were readmitted between 31 and 90 days. The median duration between discharge and readmission was 20 days (first quartile [Q1]: 9 days, third quartile [Q3]: 36 days). The most common reason for readmission was shunt related (8.2%, n = 44), followed by wound infection (4.7%, n = 25). In the risk-adjusted multivariable logistic regression model for total 90-day readmission, patients with the following characteristics: younger age (p = 0.001, OR 0.886, 95% CI 0.824–0.952); “other” (nonwhite, nonblack) race (p = 0.024, OR 5.49, 95% CI 1.246–24.2); and those born preterm (p = 0.032, OR 2.1, 95% CI 1.1–4.12) had higher odds of being readmitted within 90 days after discharge. The total median cost for patients undergoing surgery in this study cohort was $11,520 (Q1: $7103, Q3: $19,264). For the patients who were readmitted, the median cost for a readmission episode was $8981 (Q1: $5051, Q3: $18,713).

CONCLUSIONS

Unplanned 90-day readmissions in pediatric neurosurgery are primarily due to CSF-related complications. Patients with the following characteristics: young age at presentation; “other” race; and children born preterm have a higher likelihood of being readmitted within 90 days after surgery. The median cost was > $8000, which suggests that the readmission episode can be as expensive as the index hospitalization. Clearly, readmission reduction has the potential for significant cost savings in pediatric neurosurgery. Future efforts, such as targeted education related to complication signs, should be considered in the attempt to reduce unplanned events. Given the single-center, retrospective study design, the results of this study are primarily applicable to this population and cannot necessarily be generalized to other institutions without further study.

Restricted access

Jaims Lim, Alan R. Tang, Campbell Liles, Alexander A. Hysong, Andrew T. Hale, Christopher M. Bonfield, Robert P. Naftel, John C. Wellons III and Chevis N. Shannon

OBJECTIVE

Many studies have aimed to determine the most clinically effective surgical intervention for hydrocephalus. However, the costs associated with each treatment option are poorly understood. In this study, the authors conducted a cost-effectiveness analysis, calculating the incremental cost-effectiveness ratio (ICER) of ventriculoperitoneal shunting (VPS), endoscopic third ventriculostomy (ETV), and ETV with choroid plexus cauterization (ETV/CPC) in an effort to better understand the clinical effectiveness and costs associated with treating hydrocephalus.

METHODS

The study cohort includes patients under the age of 18 who were initially treated for hydrocephalus between January 2012 and January 2015 at the authors’ institution. Overall treatment costs were calculated using patient-level hospitalization costs and professional fees reimbursable to the hospital and directly related to the initial and follow-up (postoperative day 1 to 12 months) treatment of hydrocephalus. TreeAge Pro was used to conduct the cost-effectiveness analyses.

RESULTS

A total of 147 patients were identified. Based on the initial intervention for hydrocephalus, their cases were classified as follows: 113 VPS, 14 ETV, and 20 ETV/CPC. During the initial intervention, VPS patients required a longer length of stay at 5.6 days, compared to ETV/CPC (3.35 days) and ETV (2.36 days) patients. Failure rates for all treatment options ranged from 29% to 45%, leading to recurrent hydrocephalus and additional surgical intervention between postoperative day 1 and 12 months. Cost-effectiveness analyses found ETV to be less costly and more clinically effective, with an ICER of $94,797 compared to VPS ($130,839) and ETV/CPC ($126,394). However, when stratified by etiology, VPS was found to be more clinically effective and cost-effective in both the myelomeningocele and posthemorrhagic hydrocephalus patient groups with an incremental cost per clinical unit of effectiveness (success or failure of intervention) of $76,620 compared to ETV and ETV/CPC. However, when assessing cases categorized as “other etiologies,” ETV was found to be more cost-effective per clinical unit, with an ICER of $60,061 compared to ETV/CPC ($93,350) and VPS ($142,135).

CONCLUSIONS

This study is one of the first attempts at quantifying the patient-level hospitalization costs associated with surgical management of hydrocephalus in pediatric patients treated in the United States. The results indicate that the conversation regarding CSF diversion techniques must be patient-specific and consider etiology as well as any previous surgical intervention. Again, these findings are short-run observations, and a long-term follow-up study should be conducted to assess the cost of treating hydrocephalus over the lifetime of a patient.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010