Search Results

You are looking at 21 - 30 of 57 items for

  • Author or Editor: Adam S. Kanter x
Clear All Modify Search
Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010

Restricted access

Matthew J. Tormenti, Matthew B. Maserati, Christopher M. Bonfield, Peter C. Gerszten, John J. Moossy, Adam S. Kanter, Richard M. Spiro and David O. Okonkwo

Object

Since its original description in 1982, transforaminal lumbar interbody fusion (TLIF) has grown in popularity as a means for achieving circumferential fusion. The authors sought to define the perioperative complication rates of the TLIF procedure at a large academic medical center.

Methods

For all eligible patients from a consecutive series of 531 TLIF procedures, the institution's complication database and the medical record were reviewed to identify complications. Medical, nonprocedure-related complications such as myocardial infarction and pulmonary embolism were excluded due to inconsistency in the recording of these complications in the database. Rates were calculated for each type of complication, and subgroup analysis was performed to investigate the effect of previous lumbar surgery, and of multilevel versus single-level interbody fusion on complication rates. Odds ratios were calculated and evaluated using chi-square analysis.

Results

Five hundred thirty-one patients underwent a TLIF procedure during the study period. Two hundred forty-four patients (46%) had undergone a previous lumbar operation. Interbody fusion was performed at 1 level in 317 patients, at 2 levels in 188 patients, at 3 levels in 24 patients, and at 4 levels in 2 patients. One hundred thirty-five patients (25.4%) had at least one procedure-related complication. The most common complications were durotomy (14.3% of patients) and infection (3.8% of patients). Symptomatic screw misplacement (2.1% of patients) and interbody cage migration (1.8% of patients) were less common complications. The overall complication rate was greater in those patients who had undergone a previous operation (OR 1.75, 95% CI 1.18–2.59; p < 0.01) and in those who had multilevel surgery (OR 1.54, 95 % CI 1.04–2.28; p = 0.03), and the incidence of durotomy was higher in patients who had a previous operation (OR 1.75, 95% CI 1.07–2.87; p = 0.03). These differences were statistically significant. Durotomy also occurred more frequently in patients who had multilevel interbody fusion (OR 1.49, 95% CI 0.92–2.43; p = 0.13). A trend toward higher infection rates in those patients who underwent multilevel interbody fusion was observed (OR 1.5, 95% CI 0.62–3.68; p = 0.49), but this was not statistically significant. Infection rates did not differ between revision and first-time surgeries.

Conclusions

Transforaminal lumbar interbody fusion has gained widespread popularity as a procedure for achieving arthrodesis in the lumbar spine. Complications occurred more often in patients undergoing revision surgery or multilevel interbody fusion. Durotomy and infection were the most common complications in this series.

Full access

Adam S. Kanter and Gurpreet S. Gandhoke

Since its inception in the year 2001 the minimally invasive trans-psoas Lateral Lumbar Interbody Fusion (LLIF) approach has gained significant favor among spine surgeons. It is now routinely utilized to treat an array of spinal pathologies including degenerative disc disease, low grade spondylolisthesis, and adult spinal deformity. The intent of this video is to provide a step by step account of the basic procedural details when performing the LLIF procedure for a single level broad based degenerated lumbar disc with herniation.

The video can be found here: http://youtu.be/dZFMqmCz6Q8.

Restricted access

Simon Morr and Adam S. Kanter

The minimally destructive lateral transpsoas approach to the spine has been used in the treatment of various lumbar spinal pathologies. Approach-specific complications have been reported due to the unique surgical corridor and lateral anatomical structures. The authors report a case of complex regional pain syndrome (CRPS) following interbody cage placement utilizing the lateral lumbar transpsoas approach. A review of the literature is discussed. Further clarification of the mechanism of CRPS and its treatments remains crucial for the fine-tuning of novel surgical techniques and complication avoidance during the development of these techniques.

Full access

Yen-Po Cheng, Chien-Min Chen, Shao-Wei Feng and Dueng-Yuan Hueng

Free access

Raqeeb M. Haque, Gregory M. Mundis Jr., Yousef Ahmed, Tarek Y. El Ahmadieh, Michael Y. Wang, Praveen V. Mummaneni, Juan S. Uribe, David O. Okonkwo, Robert K. Eastlack, Neel Anand, Adam S. Kanter, Frank La Marca, Behrooz A. Akbarnia, Paul Park, Virginie Lafage, Jamie S. Terran, Christopher I. Shaffrey, Eric Klineberg, Vedat Deviren and Richard G. Fessler

Object

Various surgical approaches, including open, minimally invasive, and hybrid techniques, have gained momentum in the management of adult spinal deformity. However, few data exist on the radiographic outcomes of different surgical techniques. The objective of this study was to compare the radiographic and clinical outcomes of the surgical techniques used in the treatment of adult spinal deformity.

Methods

The authors conducted a retrospective review of two adult spinal deformity patient databases, a prospective open surgery database and a retrospective minimally invasive surgery (MIS) and hybrid surgery database. The time frame of enrollment in this study was from 2007 to 2012. Spinal deformity patients were stratified into 3 surgery groups: MIS, hybrid surgery, and open surgery. The following pre- and postoperative radiographic parameters were assessed: lumbar major Cobb angle, lumbar lordosis, pelvic incidence minus lumbar lordosis (PI−LL), sagittal vertical axis, and pelvic tilt. Scores on the Oswestry Disability Index (ODI) and a visual analog scale (VAS) for both back and leg pain were also obtained from each patient.

Results

Of the 234 patients with adult spinal deformity, 184 patients had pre- and postoperative radiographs and were thus included in the study (MIS, n = 42; hybrid, n = 33; open, n = 109). Patients were a mean of 61.7 years old and had a mean body mass index of 26.9 kg/m2. Regarding radiographic outcomes, the MIS group maintained a significantly smaller mean lumbar Cobb angle (13.1°) after surgery compared with the open group (20.4°, p = 0.002), while the hybrid group had a significantly larger lumbar curve correction (26.6°) compared with the MIS group (18.8°, p = 0.045). The mean change in the PI−LL was larger for the hybrid group (20.6°) compared with the open (10.2°, p = 0.023) and MIS groups (5.5°, p = 0.003). The mean sagittal vertical axis correction was greater for the open group (25 mm) compared with the MIS group (≤ 1 mm, p = 0.008). Patients in the open group had a significantly larger postoperative thoracic kyphosis (41.45°) compared with the MIS patients (33.5°, p = 0.005). There were no significant differences between groups in terms of pre- and postoperative mean ODI and VAS scores at the 1-year follow-up. However, patients in the MIS group had much lower estimated blood loss and transfusion rates compared with patients in the hybrid or open groups (p < 0.001). Operating room time was significantly longer with the hybrid group compared with the MIS and open groups (p < 0.001). Major complications occurred in 14% of patients in the MIS group, 14% in the hybrid group, and 45% in the open group (p = 0.032).

Conclusions

This study provides valuable baseline characteristics of radiographic parameters among 3 different surgical techniques used in the treatment of adult spinal deformity. Each technique has advantages, but much like any surgical technique, the positive and negative elements must be considered when tailoring a treatment to a patient. Minimally invasive surgical techniques can result in clinical outcomes at 1 year comparable to those obtained from hybrid and open surgical techniques.

Free access

Juan S. Uribe, Armen R. Deukmedjian, Praveen V. Mummaneni, Kai-Ming G. Fu, Gregory M. Mundis Jr., David O. Okonkwo, Adam S. Kanter, Robert Eastlack, Michael Y. Wang, Neel Anand, Richard G. Fessler, Frank La Marca, Paul Park, Virginie Lafage, Vedat Deviren, Shay Bess and Christopher I. Shaffrey

Object

It is hypothesized that minimally invasive surgical techniques lead to fewer complications than open surgery for adult spinal deformity (ASD). The goal of this study was to analyze matched patient cohorts in an attempt to isolate the impact of approach on adverse events.

Methods

Two multicenter databases queried for patients with ASD treated via surgery and at least 1 year of follow-up revealed 280 patients who had undergone minimally invasive surgery (MIS) or a hybrid procedure (HYB; n = 85) or open surgery (OPEN; n = 195). These patients were divided into 3 separate groups based on the approach performed and were propensity matched for age, preoperative sagittal vertebral axis (SVA), number of levels fused posteriorly, and lumbar coronal Cobb angle (CCA) in an attempt to neutralize these patient variables and to make conclusions based on approach only. Inclusion criteria for both databases were similar, and inclusion criteria specific to this study consisted of an age > 45 years, CCA > 20°, 3 or more levels of fusion, and minimum of 1 year of follow-up. Patients in the OPEN group with a thoracic CCA > 75° were excluded to further ensure a more homogeneous patient population.

Results

In all, 60 matched patients were available for analysis (MIS = 20, HYB = 20, OPEN = 20). Blood loss was less in the MIS group than in the HYB and OPEN groups, but a significant difference was only found between the MIS and the OPEN group (669 vs 2322 ml, p = 0.001). The MIS and HYB groups had more fused interbody levels (4.5 and 4.1, respectively) than the OPEN group (1.6, p < 0.001). The OPEN group had less operative time than either the MIS or HYB group, but it was only statistically different from the HYB group (367 vs 665 minutes, p < 0.001). There was no significant difference in the duration of hospital stay among the groups. In patients with complete data, the overall complication rate was 45.5% (25 of 55). There was no significant difference in the total complication rate among the MIS, HYB, and OPEN groups (30%, 47%, and 63%, respectively; p = 0.147). No intraoperative complications were reported for the MIS group, 5.3% for the HYB group, and 25% for the OPEN group (p < 0.03). At least one postoperative complication occurred in 30%, 47%, and 50% (p = 0.40) of the MIS, HYB, and OPEN groups, respectively. One major complication occurred in 30%, 47%, and 63% (p = 0.147) of the MIS, HYB, and OPEN groups, respectively. All patients had significant improvement in both the Oswestry Disability Index (ODI) and visual analog scale scores after surgery (p < 0.001), although the MIS group did not have significant improvement in leg pain. The occurrence of complications had no impact on the ODI.

Conclusions

Results in this study suggest that the surgical approach may impact complications. The MIS group had significantly fewer intraoperative complications than did either the HYB or OPEN groups. If the goals of ASD surgery can be achieved, consideration should be given to less invasive techniques.

Free access

Adam S. Kanter, Christopher I. Shaffrey, Praveen Mummaneni, Michael Y. Wang and Juan S. Uribe