Search Results

You are looking at 11 - 20 of 104 items for

  • Author or Editor: James M. Drake x
Clear All Modify Search
Restricted access

Marcia C. da Silva, James M. Drake, Claude Lemaire, Albert Cross and Ursula I. Tuor

✓ The authors studied the effects of hydrocephalus on the high-energy phosphate metabolism of the brain and the impact of ventriculoperitoneal (VP) shunting on these changes in an experimental model of hydrocephalus. High-energy phosphate metabolism was analyzed using in vivo magnetic resonance (MR) imaging and 31P MR spectroscopy. Hydrocephalus was produced in 34 1-week-old kittens by cisternal injection of 0.05 ml of a 25% kaolin solution. Sixteen litter mates were used as controls. A VP shunt with a distal slit valve was implanted in 17 of the 34 hydrocephalic animals 10 days after induction of hydrocephalus. Both MR imaging and 31P MR spectroscopy were obtained 1 and 3 weeks after either kaolin or distilled water injection. Untreated hydrocephalic animals had marked dilatation of the lateral ventricles and periventricular edema. Magnetic resonance spectroscopy showed a significant decrease in the energy index ratio of phosphocreatine (PCR): inorganic phosphate (PI) and an increase in the PI:adenosine triphosphate (ATP) ratio. There was a direct correlation between the decrease in the energy index and ventricular size. Compared with preoperative scans, shunted animals showed no periventricular edema, and the ventricles decreased in size. Also, PCR:PI and PI:ATP ratios were within the levels of controls. This study suggests that neonatal hydrocephalus results in a mild hypoxic/ischemic insult that is treatable by VP shunting.

Full access

Yuzuru Tashiro, Shushovan Chakrabortty, James M. Drake and Toshiaki Hattori

The authors investigated functional neuronal changes in experimental hydrocephalus using immunohistochemical techniques for glutamic acid decarboxylase (GAD) and two neuronal calcium-binding proteins: parvalbumin (PV) and calbindin D28K (CaBP).

Hydrocephalus was induced in 16 adult Wistar rats by intracisternal injection of a kaolin solution, which was confirmed microscopically via atlantooccipital dural puncture. Four control rats received the same volume of sterile saline. Immunohistochemical staining for GAD, PV, and CaBP and Nissl staining were performed at 1, 2, 3, and 4 weeks after the injection. Hydrocephalus occurred in 90% of kaolin-injected animals with various degrees of ventricular dilation. In the cerebral cortex, GAD-, PV-, and CaBP-immunoreactive (IR) interneurons initially lost their stained processes together with a concomitant loss of homogeneous neuropil staining, followed by the reduction of their total number. With progressive ventricular dilation, GAD- and PV-IR axon terminals on the cortical pyramidal cells disappeared, whereas the number of CaBP-IR pyramidal cells decreased, and ultimately in the most severe cases of hydrocephalus, GAD, PV, and CaBP immunoreactivity was almost entirely diminished. In the hippocampus, GAD-, PV-, and CaBP-IR interneurons demonstrated a reduction of their processes and terminals surrounding the pyramidal cells, with secondary reduction of CaBP-IR pyramidal and granular cells. On the other hand, Nissl staining revealed almost no morphological changes induced by ischemia or neuronal degeneration even in the most severe cases of hydrocephalus.

Hydrocephalus results in the progressive functional impairment of GAD-, PV-, and CaBP-IR neuronal systems in the cerebral cortex and hippocampus, often before there is evidence of morphological injury. The initial injury of cortical and hippocampal interneurons suggests that the functional deafferentation from intrinsic projection fibers may be the initial neuronal event in hydrocephalic brain injury. Although the mechanism of this impairment is still speculative, these findings emphasize the importance of investigating the neuronal pathophysiology in hydrocephalus.

Restricted access
Restricted access

Yuzuru Tashiro, Shushovan Chakrabortty, James M. Drake and Toshiaki Hattori

✓ The authors investigated functional neuronal changes in experimental hydrocephalus using immunohistochemical techniques for glutamic acid decarboxylase (GAD) and two neuronal calcium-binding proteins: parvalbumin (PV) and calbindin D28K (CaBP).

Hydrocephalus was induced in 16 adult Wistar rats by intracisternal injection of a kaolin solution, which was confirmed microscopically via atlantooccipital dural puncture. Four control rats received the same volume of sterile saline. Immunohistochemical staining for GAD, PV, and CaBP, and Nissl staining were performed at 1, 2, 3, and 4 weeks after the injection. Hydrocephalus occurred in 90% of kaolin-injected animals with various degrees of ventricular dilation. In the cerebral cortex, GAD-, PV-, and CaBP-immunoreactive (IR) interneurons initially lost their stained processes together with a concomitant loss of homogeneous neuropil staining, followed by the reduction of their total number. With progressive ventricular dilation, GAD- and PV-IR axon terminals on the cortical pyramidal cells disappeared, whereas the number of CaBP-IR pyramidal cells decreased, and ultimately in the most severe cases of hydrocephalus, GAD, PV, and CaBP immunoreactivity were almost entirely diminished. In the hippocampus, GAD-, PV-, and CaBP-IR interneurons demonstrated a reduction of their processes and terminals surrounding the pyramidal cells, with secondary reduction of CaBP-IR pyramidal and granular cells. On the other hand, Nissl staining revealed almost no morphological changes induced by ischemia or neuronal degeneration even in the most severe cases of hydrocephalus.

Hydrocephalus results in the progressive functional impairment of GAD-, PV-, and CaBP-IR neuronal systems in the cerebral cortex and hippocampus, often before there is evidence of morphological injury. The initial injury of cortical and hippocampal interneurons suggests that the functional deafferentation from intrinsic projection fibers may be the initial neuronal event in hydrocephalic brain injury. Although the mechanism of this impairment is still speculative, these findings emphasize the importance of investigating the neuronal pathophysiology in hydrocephalus.

Restricted access

Yuzuru Tashiro and James M. Drake

Intellectual impairment has been related to alteration of neuronal innervation in the following regions: cholinergic basal forebrain nuclei (Ch1–Ch6, learning and memory), dopaminergic ventral tegmental area (emotional control), and noradrenergic locus ceruleus (cognition). Recent studies have implicated neuronal injury in the pathogenesis of hydrocephalus.

Object. The authors used immunohistochemical techniques to investigate functional injury in these regions in animals with progressive hydrocephalus, following shunt placement for cerebrospinal fluid (CSF) drainage.

Methods. Hydrocephalus was induced in 20 Wistar rats by intracisternal injection of 0.05 ml of 25% kaolin solution. Four control animals (Group 1) received the same volume of saline. Ventriculoperitoneal shunts were inserted in eight rats at 2 and 4 weeks after kaolin injection and the animals were killed at 8 weeks (Group 2). The other 12 hydrocephalic animals were killed at 2, 4, and 8 weeks without undergoing shunt placement (Group 3). Immunoreactive (IR) neurons to choline acetyltransferase (ChAT) in Ch1–Ch6, tyrosine hydroxylase (TH) in the ventral tegmental area, and dopamine B-hydroxylase (DBH) in the locus ceruleus, as well as IR projection fibers in the terminal areas, were compared between groups. The number of ChAT- and TH-IR neurons in rats with and without shunt placement was counted for quantitative analysis. The number of ChAT-IR neurons was progressively reduced during the development of hydrocephalus in Ch1, Ch2, Ch3, and Ch4 (p < 0.05). Tyrosine-hydroxylase-immunoreactive neurons were also reduced in number, and demonstrated decreased projection fibers and terminals. Early shunting (at 2 weeks) restored ChAT and TH immunoreactivity to control levels, but late shunting (at 4 weeks) did not (p < 0.05). The DBH—IR neurons in the locus ceruleus were remarkably compressed by the dilated fourth ventricle, and diminished immunoreactivity was observed in the terminal areas. Shunt placement for CSF also restored the immunoreactivity in this system.

Conclusions. These findings indicate that a progressive functional injury occurs in the cholinergic, dopaminergic, and noradrenergic systems as a result of hydrocephalus. This may contribute to intellectual impairment and might be prevented by early treatment with shunt placement.

Restricted access

Abhaya V. Kulkarni, Laurence E. Becker, Venita Jay, Derek C. Armstrong and James M. Drake

✓ Primary cerebellar glioblastomas multiforme are exceedingly rare in children. The authors therefore retrospectively characterized the clinical behavior and pathological features of these tumors. A review of the database at the Hospital for Sick Children, Toronto, Canada revealed four patients with cerebellar tumors that displayed significant pleomorphism, hypercellularity, mitoses, and necrosis with pseudopalisading. The authors performed a detailed clinical, radiological, histological, and immunohistochemical analysis of the tumors in these four children (three boys and one girl; average age at presentation 7 years; range 21 months–15 years). Magnetic resonance imaging and computerized tomography most commonly revealed a large lesion with minimal edema, inhomogeneous contrast enhancement, and a discrete border. Tumor resection was subtotal in one patient and gross total in three patients. Immunostaining of the tumor cells with antisera to glial fibrillary acidic protein and vimentin was positive in varying degrees. Initial adjuvant therapy consisted of local radiation only (one patient), chemotherapy only (one patient), and radiation and chemotherapy (one patient). One patient received no adjuvant therapy. Tumor recurrence was documented in all patients: two local recurrences (at 3.5 and 7 months), one spinal recurrence (at 14 months), and one local recurrence with ventricular and spinal spread (at 8 months). Ultimately, three of the four patients developed leptomeningeal tumor spread. Patient follow up ranged from 8 to 17 months (mean 12.5 months). Three patients were dead at last follow up with a mean survival of 15 months.

The prognosis for patients with cerebellar glioblastomas is extremely poor, and the tumor has a tendency for cerebrospinal fluid dissemination. The optimal management of patients harboring of these difficult-to-treat tumors, including the role of craniospinal radiation and chemotherapy, has not yet been achieved.

Full access

Sagun Tuli, James Drake, Jerry Lawless, Melanie Wigg and Maria Lamberti-Pasculli

Repeated cerebrospinal fluid (CSF) shunt failures in pediatric patients who have undergone neurosurgical procedures are common, and they are a significant cause of morbidity and occasionally mortality. To date, the risk factors for repeated failure have not been established. By performing survival analysis for repeated events, the authors examined the effects of patient characteristics, shunt hardware, and surgical details in a large cohort of patients.

During a 10-year period all pediatric patients with hydrocephalus requiring CSF diversionary procedures were included in a prospective single-institution observational study. Patient characteristics were defined as age, gender, weight, head circumference; American Society of Anesthesiology class, and the cause of hydrocephalus. Surgical details included whether the procedure was performed on an emergency or nonemergency basis, use of antibiotics, concurrent other surgical procedures, and the duration of surgical procedure. Details on shunt hardware included the type of shunt, the valve system, whether the shunt system included multiple or complex components, the type of distal catheter, site of the shunt, and side on which the shunt was placed.

Repeated shunt failures were assessed with multivariable time-to-event analysis (using the Cox regression model). Conditional models (as established by Prentice, et al.) were formulated for gap times (that is, times between successive shunt failures).

There were 1183 shunt failures in 839 patients. Failure time from the first shunt procedure was an important predictor for the second and third episodes of failures, thus establishing an association between the times to failure within individual patients. Age of less than 40 weeks gestation at time of the first shunt implantion carried a hazard ratio (HR) of 2.49 (95% confidence interval [CI] 1.68-3.68) for the first failure and remained high for subsequent episodes of failure. Age of 40 weeks to 1 year (at the time of the initial surgery) also proved to be an important predictor of first shunt malfunctions (HR 1.77, 95% CI 1.29-2.44). The cause of hydrocephalus was significantly associated with the risk of initial failure and, to a lesser extent, later failures. Concurrent other surgical procedures were associated with an increased risk of failure.

The patient's age at the time of initial shunt placement and the time interval since previous surgical revision are important predictors of repeated shunt failures in the multivariable model. Even after adjusting for age at first shunt insertion as well as the cause of hydrocephalus there is significant association between repeated failure times for individual patients.

Restricted access

Sagun Tuli, James Drake, Jerry Lawless, Melanie Wigg and Maria Lamberti-Pasculli

Object. Repeated cerebrospinal fluid (CSF) shunt failures in pediatric patients are common, and they are a significant cause of morbidity and, occasionally, of death. To date, the risk factors for repeated failure have not been established. By performing survival analysis for repeated events, the authors examined the effects of patient characteristics, shunt hardware, and surgical details in a large cohort of patients.

Methods. During a 10-year period all pediatric patients with hydrocephalus requiring CSF diversion procedures were included in a prospective single-institution observational study. Patient characteristics were defined as age, gender, weight, head circumference, American Society of Anesthesiology class, and cause of hydrocephalus. Surgical details included whether the procedure was performed on an emergency or nonemergency basis, use of antibiotic agents, concurrent surgical procedures, and duration of the surgical procedure. Details on shunt hardware included: the type of shunt, the valve system, whether the shunt system included multiple or complex components, the type of distal catheter, the site of the shunt, and the side on which the shunt was placed.

Repeated shunt failures were assessed using multivariable time-to-event analysis (by using the Cox regression model). Conditional models (as established by Prentice, et al.) were formulated for gap times (that is, times between successive shunt failures).

There were 1183 shunt failures in 839 patients. Failure time from the first shunt procedure was an important predictor for the second and third episodes of failure, thus establishing an association between the times to failure within individual patients. An age younger than 40 weeks gestation at the time of the first shunt implantion carried a hazard ratio (HR) of 2.49 (95% confidence interval [CI] 1.68–3.68) for the first failure, which remained high for subsequent episodes of failure. An age from 40 weeks gestation to 1 year (at the time of the initial surgery) also proved to be an important predictor of first shunt malfunctions (HR 1.77, 95% CI 1.29–2.44). The cause of hydrocephalus was significantly associated with the risk of initial failure and, to a lesser extent, later failures. Concurrent other surgical procedures were associated with an increased risk of failure.

Conclusions. The patient's age at the time of initial shunt placement and the time interval since previous surgical revision are important predictors of repeated shunt failures in the multivariable model. Even after adjusting for age at first shunt insertion as well as the cause of hydrocephalus, there is significant association between repeated failure times for individual patients.

Restricted access

Abhaya V. Kulkarni, James M. Drake, Derek C. Armstrong and Peter B. Dirks

Object. The goal of this study was to determine and compare imaging correlates in pediatric patients who underwent successful or failed endoscopic third ventriculostomies (ETVs). To this end, the authors measured ventricular size changes and the presence of cerebrospinal fluid (CSF) flow void in both groups of children following ETV.

Methods. Images obtained in children with hydrocephalus immediately before and at least 30 days after having undergone ETV were reviewed by four independent observers (two blinded and two nonblinded). Each observer independently measured the frontal and occipital horn ratio ([FOR], a reliable and valid measure of ventricular size) and provided a subjective assessment of the presence of a flow void at the ETV site, the degree of periventricular edema, and the amount of CSF over the cerebral hemispheres.

There were 29 children whose mean age was 6.6 years at the time of ETV and who had a mean postoperative follow-up period lasting 1.6 years. Postoperatively, the mean reduction in ventricular size (as measured using the FOR) was 7% (95% confidence interval [CI] 3–11%) in cases that were deemed failures (eight patients) and 16% (95% CI 12–20%) in clinically successful cases (21 patients). This reduction was significantly greater in cases of clinical success compared with those that were deemed failures (p = 0.03, t-test). There were no substantial differences between blinded and nonblinded assessments. Flow void was present in 94% of successes and absent in 75% of failures (p = 0.01, Fisher's exact test). The other subjective assessments were not significantly different between the groups of successes and failures.

Conclusions. Ventricular size appears to be somewhat reduced in both groups of patients who underwent clinically successful and failed ETV; however, the reduction is significantly greater among clinically successful cases. The presence of a flow void also appears to correlate with clinical success and its absence with clinical failure.