Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Tianxia Wu x
  • By Author: Wu, Tianxia x
  • By Author: Lonser, Russell R. x
Clear All Modify Search
Restricted access

Michael S. Dirks, John A. Butman, H. Jeffrey Kim, Tianxia Wu, Keaton Morgan, Anne P. Tran, Russell R. Lonser and Ashok R. Asthagiri

Object

Neurofibromatosis Type 2 (NF2) is a heritable tumor predisposition syndrome that leads to the development of multiple intracranial tumors, including meningiomas and schwannomas. Because the natural history of these tumors has not been determined, their optimal management has not been established. To define the natural history of NF2-associated intracranial tumors and to optimize management strategies, the authors evaluated long-term clinical and radiographic data in patients with NF2.

Methods

Consecutive NF2 patients with a minimum of 4 years of serial clinical and MRI follow-up were analyzed.

Results

Seventeen patients, 9 males and 8 females, were included in this analysis (mean follow-up 9.5 ± 4.8 years, range 4.0–20.7 years). The mean age at initial evaluation was 33.2 ± 15.5 years (range 12.3–57.6 years). Patients harbored 182 intracranial neoplasms, 164 of which were assessable for growth rate analysis (18 vestibular schwannomas [VSs], 11 nonvestibular cranial nerve [CN] schwannomas, and 135 meningiomas) and 152 of which were assessable for growth pattern analysis (15 VSs, 9 nonvestibular CN schwannomas, and 128 meningiomas). New tumors developed in patients over the course of the imaging follow-up: 66 meningiomas, 2 VSs, and 2 nonvestibular CN schwannomas. Overall, 45 tumors (29.6%) exhibited linear growth, 17 tumors (11.2%) exhibited exponential growth, and 90 tumors (59.2%) displayed a saltatory growth pattern characterized by alternating periods of growth and quiescence (mean quiescent period 2.3 ± 2.1 years, range 0.4–11.7 years). Further, the saltatory pattern was the most frequently identified growth pattern for each tumor type: meningiomas 60.9%, VSs 46.7%, and nonvestibular schwannoma 55.6%. A younger age at the onset of NF2-related symptoms (p = 0.01) and female sex (p = 0.05) were associated with an increased growth rate in meningiomas. The identification of saltatory growth in meningiomas increased with the duration of follow-up (p = 0.01).

Conclusions

Neurofibromatosis Type 2–associated intracranial tumors most frequently demonstrated a saltatory growth pattern. Because new tumors can develop in NF2 patients over their lifetime and because radiographic progression and symptom formation are unpredictable, resection may be best reserved for symptom-producing tumors. Moreover, establishing the efficacy of nonsurgical therapeutic interventions must be based on long-term follow-up (several years).

Free access

Russell R. Lonser, John A. Butman, Kristin Huntoon, Ashok R. Asthagiri, Tianxia Wu, Kamran D. Bakhtian, Emily Y. Chew, Zhengping Zhuang, W. Marston Linehan and Edward H. Oldfield

Object

The tumors most frequently associated with von Hippel-Lindau (VHL) disease are hemangioblastomas. While they are associated with significant neurological impairment and mortality, their natural history and optimal management have not been fully defined.

Methods

Patients with VHL were enrolled in a prospective study designed to define the natural history of CNS hemangioblastomas. In the present analysis, serial imaging, laboratory, genetic, and clinical data were evaluated in those with at least 2 years of follow-up data.

Results

At study entrance 225 patients (111 males, 114 females) harbored 1921 CNS hemangioblastomas in the supratentorial compartment (21 tumors [1%]), cerebellum (865 [45%]), brainstem (129 [7%]), spinal cord (689 [36%]), cauda equina (212 [11%]), and nerve roots (5 [0.3%]; follow-up 15,819 hemangioblastoma-years). Increased tumor burden was associated with partial deletions in the VHL gene (p = 0.005) and male sex (p = 0.002). Hemangioblastoma development (median 0.3 new tumors/year) was associated with younger age (p < 0.0001) and more tumors at study entrance (p < 0.0001). While 1278 hemangioblastomas (51%) did not grow, 1227 hemangioblastomas (49%) grew in a saltatory (886 [72%]), linear (76 [6%]), or exponential (264 [22%]) pattern. Faster tumor growth was associated with male sex (p = 0.001), symptomatic tumors (p < 0.0001), and tumors associated with cysts (p < 0.0001). Location-dependent tumor size was the primary predictor of eventual symptom formation (159 symptomatic tumors [6.3%]; area under the curve > 0.9).

Conclusions

Central nervous system hemangioblastoma burden in VHL is associated with partial germline deletions and male sex. Unpredictable growth of hemangioblastomas compromises assessment of nonsurgical therapies. The judicious treatment of symptom-producing hemangioblastomas, while avoiding unnecessary treatment of asymptomatic tumors that may not progress, can provide clinical stability. Clinical trial registration no.: NCT00005902 (ClinicalTrials.gov).

Full access

Kristin Huntoon, Tianxia Wu, J. Bradley Elder, John A. Butman, Emily Y. Chew, W. Marston Linehan, Edward H. Oldfield and Russell R. Lonser

OBJECT

Peritumoral cysts are frequently associated with CNS hemangioblastomas and often underlie neurological morbidity and mortality. To determine their natural history and clinical impact, the authors prospectively analyzed hemangioblastoma-associated peritumoral cysts in patients with von Hippel-Lindau (VHL) disease.

METHODS

Patients with VHL disease who had 2 or more years of follow-up and who were enrolled in a prospective study at the National Institutes of Health were included. Serial prospectively acquired laboratory, genetic, imaging, and clinical data were analyzed.

RESULTS

One hundred thirty-two patients (of 225 in the VHL study with at least 2 years of follow-up) had peritumoral cysts that were followed for more than 2 years (total of 292 CNS peritumoral cysts). The mean age at study entrance was 37.4 ± 13.1 years ([mean ± SD], median 37.9, range 12.3–65.1 years). The mean follow-up was 7.0 ± 1.7 years (median 7.3, range 2.1–9.0 years). Over the study period, 121 of the 292 peritumoral cysts (41.4%) became symptomatic. Development of new cysts was associated with a larger number cysts at study enrollment (p = 0.002) and younger age (p < 0.0001). Cyst growth rate was associated with anatomical location (cerebellum cysts grew faster than spine and brainstem cysts; p = 0.0002 and p = 0.0008), younger age (< 35 years of age; p = 0.0006), and development of new neurological symptoms (p < 0.0001). Cyst size at symptom production depended on anatomical location (p < 0.0001; largest to smallest were found, successively, in the cerebellum, spinal cord, and brainstem). The most common location for peritumoral cysts was the cerebellum (184 cysts [63%]; p < 0.0001).

CONCLUSIONS

Peritumoral cysts frequently underlie symptom formation that requires surgical intervention in patients with VHL disease. Development of new cysts was associated with a larger number of cysts at study enrollment and younger age. Total peritumoral cyst burden was associated with germline partial deletion of the VHL gene.