Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Yingli Wolinsky x
  • By Author: Chiocca, E. Antonio x
  • By Author: Warnick, Ronald E. x
Clear All Modify Search
Restricted access

Jaime Vengoechea, Andrew E. Sloan, Yanwen Chen, Xiaowei Guan, Quinn T. Ostrom, Amber Kerstetter, Devan Capella, Mark L. Cohen, Yingli Wolinsky, Karen Devine, Warren Selman, Gene H. Barnett, Ronald E. Warnick, Christopher McPherson, E. Antonio Chiocca, J. Bradley Elder and Jill S. Barnholtz-Sloan

Object

Although most meningiomas are benign, about 20% are atypical (Grade II or III) and have increased mortality and morbidity. Identifying tumors with greater malignant potential can have significant clinical value. This validated genome-wide methylation study comparing Grade I with Grade II and III meningiomas aims to discover genes that are aberrantly methylated in atypical meningiomas.

Methods

Patients with newly diagnosed meningioma were identified as part of the Ohio Brain Tumor Study. The Infinium HumanMethylation27 BeadChip (Illumina, Inc.) was used to interrogate 27,578 CpG sites in 14,000 genes per sample for a discovery set of 33 samples (3 atypical). To verify the results, the Infinium HumanMethylation450 BeadChip (Illumina, Inc.) was used to interrogate 450,000 cytosines at CpG loci throughout the genome for a verification set containing 7 replicates (3 atypical), as well as 12 independent samples (6 atypical). A nonparametric Wilcoxon exact test was used to test for difference in methylation between benign and atypical meningiomas in both sets. Heat maps were generated for each set. Methylation results were validated for the 2 probes with the largest difference in methylation intensity by performing Western blot analysis on a set of 20 (10 atypical) samples, including 11 replicates.

Results

The discovery array identified 95 probes with differential methylation between benign and atypical meningiomas, creating 2 distinguishable groups corresponding to tumor grade when visually examined on a heat map. The validation array evaluated 87 different probes and showed that 9 probes were differentially methylated. On heat map examination the results of this array also suggested the existence of 2 major groups that corresponded to histological grade. IGF2BP1 and PDCD1, 2 proteins that can increase the malignant potential of tumors, were the 2 probes with the largest difference in intensity, and for both of these the atypical meningiomas had a decreased median production of protein, though this was not statistically significant (p = 0.970 for IGF2BP1 and p = 1 for PDCD1).

Conclusions

A genome-wide methylation analysis of benign and atypical meningiomas identified 9 genes that were reliably differentially methylated, with the strongest difference in IGF2BP1 and PDCD1. The mechanism why increased methylation of these sites is associated with an aggressive phenotype is not evident. Future research may investigate this mechanism, as well as the utility of IGF2BP1 as a marker for pathogenicity in otherwise benign-appearing meningiomas.