Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Ken Matsushima x
  • By Author: Yagmurlu, Kaan x
Clear All Modify Search
Full access

Ken Matsushima, Kaan Yagmurlu, Michihiro Kohno and Albert L. Rhoton Jr.


Fissure dissection is routinely used in the supratentorial region to access deeply situated pathology while minimizing division of neural tissue. Use of fissure dissection is also practical in the posterior fossa. In this study, the microsurgical anatomy of the 3 cerebellar-brainstem fissures (cerebellomesencephalic, cerebellopontine, and cerebellomedullary) and the various procedures exposing these fissures in brainstem surgery were examined.


Seven cadaveric heads were examined with a microsurgical technique and 3 with fiber dissection to clarify the anatomy of the cerebellar-brainstem and adjacent cerebellar fissures, in which the major vessels and neural structures are located. Several approaches directed along the cerebellar surfaces and fissures, including the supracerebellar infratentorial, occipital transtentorial, retrosigmoid, and midline suboccipital approaches, were examined. The 3 heads examined using fiber dissection defined the anatomy of the cerebellar peduncles coursing in the depths of these fissures.


Dissections directed along the cerebellar-brainstem and cerebellar fissures provided access to the posterior and posterolateral midbrain and upper pons, lateral pons, floor and lateral wall of the fourth ventricle, and dorsal and lateral medulla.


Opening the cerebellar-brainstem and adjacent cerebellar fissures provided access to the brainstem surface hidden by the cerebellum, while minimizing division of neural tissue. Most of the major cerebellar arteries, veins, and vital neural structures are located in or near these fissures and can be accessed through them.