Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: John R. W. Kestle x
  • By Author: Wellons, John C. x
Clear All Modify Search
Restricted access

Jay Riva-Cambrin, Chevis N. Shannon, Richard Holubkov, William E. Whitehead, Abhaya V. Kulkarni, James Drake, Tamara D. Simon, Samuel R. Browd, John R. W. Kestle and John C. Wellons III

Object

There is little consensus regarding the indications for surgical CSF diversion (either with implanted temporizing devices [reservoir or subgaleal shunt] or shunt alone) in preterm infants with posthemorrhagic hydrocephalus. The authors determined clinical and neuroimaging factors associated with the use of surgical CSF diversion among neonates with intraventricular hemorrhage (IVH), and describe variations in practice patterns across 4 large pediatric centers.

Methods

The use of implanted temporizing devices and conversion to permanent shunts was examined in a consecutive sample of 110 neonates surgically treated for IVH related to prematurity from the 4 clinical centers of the Hydrocephalus Clinical Research Network (HCRN). Clinical, neuroimaging, and so-called processes of care factors were analyzed.

Results

Seventy-three (66%) of the patients underwent temporization procedures, including 50 ventricular reservoir and 23 subgaleal shunt placements. Center (p < 0.001), increasing ventricular size (p = 0.04), and bradycardia (p = 0.07) were associated with the use of an implanted temporizing device, whereas apnea, occipitofrontal circumference (OFC), and fontanel assessments were not. Implanted temporizing devices were converted to permanent shunts in 65 (89%) of the 73 neonates. Only a full fontanel (p < 0.001) and increased ventricular size (p = 0.002) were associated with conversion of the temporizing devices to permanent shunts, whereas center, OFCs, and clot characteristics were not.

Conclusions

Considerable center variability exists in neurosurgical approaches to temporization of IVH in prematurity within the HCRN; however, variation between centers is not seen with permanent shunting. Increasing ventricular size—rather than classic clinical findings such as increasing OFCs—represents the threshold for either temporization or shunting of CSF.

Restricted access

John R. W. Kestle, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, William E. Whitehead, Marion L. Walker, W. Jerry Oakes, James M. Drake, Thomas G. Luerssen, Tamara D. Simon and Richard Holubkov

Object

Quality improvement techniques are being implemented in many areas of medicine. In an effort to reduce the ventriculoperitoneal shunt infection rate, a standardized protocol was developed and implemented at 4 centers of the Hydrocephalus Clinical Research Network (HCRN).

Methods

The protocol was developed sequentially by HCRN members using the current literature and prior institutional experience until consensus was obtained. The protocol was prospectively applied at each HCRN center to all children undergoing a shunt insertion or revision procedure. Infections were defined on the basis of CSF, wound, or pseudocyst cultures; wound breakdown; abdominal pseudocyst; or positive blood cultures in the presence of a ventriculoatrial shunt. Procedures and infections were measured before and after protocol implementation.

Results

Twenty-one surgeons at 4 centers performed 1571 procedures between June 1, 2007, and February 28, 2009. The minimum follow-up was 6 months. The Network infection rate decreased from 8.8% prior to the protocol to 5.7% while using the protocol (p = 0.0028, absolute risk reduction 3.15%, relative risk reduction 36%). Three of 4 centers lowered their infection rate. Shunt surgery after external ventricular drainage (with or without prior infection) had the highest infection rate. Overall protocol compliance was 74.5% and improved over the course of the observation period. Based on logistic regression analysis, the use of BioGlide catheters (odds ratio [OR] 1.91, 95% CI 1.19–3.05; p = 0.007) and the use of antiseptic cream by any members of the surgical team (instead of a formal surgical scrub by all members of the surgical team; OR 4.53, 95% CI 1.43–14.41; p = 0.01) were associated with an increased risk of infection.

Conclusions

The standardized protocol for shunt surgery significantly reduced shunt infection across the HCRN. Overall protocol compliance was good. The protocol has established a common baseline within the Network, which will facilitate assessment of new treatments. Identification of factors associated with infection will allow further protocol refinement in the future.

Restricted access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, Richard Holubkov, Anna Illner, W. Jerry Oakes, Thomas G. Luerssen, Marion L. Walker, James M. Drake and John R. W. Kestle

Object

Cerebrospinal fluid shunt ventricular catheters inserted into the frontal horn or trigone are associated with prolonged shunt survival. Developing surgical techniques for accurate catheter insertion could, therefore, be beneficial to patients. This study was conducted to determine if the rate of accurate catheter location with intraoperative ultrasound guidance could exceed 80%.

Methods

The authors conducted a prospective, multicenter study of children (< 18 years) requiring first-time treatment for hydrocephalus with a ventriculoperitoneal shunt. Using intraoperative ultrasound, surgeons were required to target the frontal horn or trigone for catheter tip placement. An intraoperative ultrasound image was obtained at the time of catheter insertion. Ventricular catheter location, the primary outcome measure, was determined from the first postoperative image. A control group of patients treated by nonultrasound surgeons (conventional surgeons) were enrolled using the same study criteria. Conventional shunt surgeons also agreed to target the frontal horn or trigone for all catheter insertions. Patients were triaged to participating surgeons based on call schedules at each center. A pediatric neuroradiologist blinded to method of insertion, center, and surgeon determined ventricular catheter tip location.

Results

Eleven surgeons enrolled as ultrasound surgeons and 6 as conventional surgeons. Between February 2009 and February 2010, 121 patients were enrolled at 4 Hydrocephalus Clinical Research Network centers. Experienced ultrasound surgeons (> 15 cases prior to study) operated on 67 patients; conventional surgeons operated on 52 patients. Experienced ultrasound surgeons achieved accurate catheter location in 39 (59%) of 66 patients, 95% CI (46%–71%). Intraoperative ultrasound images were compared with postoperative scans. In 32.7% of cases, the catheter tip moved from an accurate location on the intraoperative ultrasound image to an inaccurate location on the postoperative study. This was the most significant factor affecting accuracy. In comparison, conventional surgeons achieved accurate location in 24 (49.0%) of 49 cases (95% CI [34%–64%]). The shunt survival rate at 1 year was 70.8% in the experienced ultrasound group and 66.9% in the conventional group (p = 0.66). Ultrasound surgeons had more catheters surrounded by CSF (30.8% vs 6.1%, p = 0.0012) and away from the choroid plexus (72.3% vs 58.3%, p = 0.12), and fewer catheters in the brain (3% vs 22.4%, p = 0.0011) and crossing the midline (4.5% vs 34.7%, p < 0.001), but they had a higher proportion of postoperative pseudomeningocele (10.1% vs 3.8%, p = 0.30), wound dehiscence (5.8% vs 0%, p = 0.13), CSF leak (10.1% vs 1.9%, p = 0.14), and shunt infection (11.6% vs 5.8%, p = 0.35).

Conclusions

Ultrasound-guided shunt insertion as performed in this study was unable to consistently place catheters into the frontal horn or trigone. The technique is safe and achieves outcomes similar to other conventional shunt insertion techniques. Further efforts to improve accurate catheter location should focus on prevention of catheter migration that occurs between intraoperative placement and postoperative imaging. Clinical trial registration no.: NCT01007786 (ClinicalTrials.gov).

Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Samuel R. Browd, James M. Drake, Richard Holubkov, John R. W. Kestle, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III and William E. Whitehead

Object

The use of endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) has been advocated as an alternative to CSF shunting in infants with hydrocephalus. There are limited reports of this procedure in the North American population, however. The authors provide a retrospective review of the experience with combined ETV + CPC within the North American Hydrocephalus Clinical Research Network (HCRN).

Methods

All children (< 2 years old) who underwent an ETV + CPC at one of 7 HCRN centers before November 2012 were included. Data were collected retrospectively through review of hospital records and the HCRN registry. Comparisons were made to a contemporaneous cohort of 758 children who received their first shunt at < 2 years of age within the HCRN.

Results

Thirty-six patients with ETV + CPC were included (13 with previous shunt). The etiologies of hydrocephalus were as follows: intraventricular hemorrhage of prematurity (9 patients), aqueductal stenosis (8), myelomeningocele (4), and other (15). There were no major intraoperative or early postoperative complications. There were 2 postoperative CSF infections. There were 2 deaths unrelated to hydrocephalus and 1 death from seizure. In 18 patients ETV + CPC failed at a median time of 30 days after surgery (range 4–484 days). The actuarial 3-, 6-, and 12-month success for ETV + CPC was 58%, 52%, and 52%. Time to treatment failure was slightly worse for the 36 patients with ETV + CPC compared with the 758 infants treated with shunts (p = 0.012). Near-complete CPC (≥ 90%) was achieved in 11 cases (31%) overall, but in 50% (10 of 20 cases) in 2012 versus 6% (1 of 16 cases) before 2012 (p = 0.009). Failure was higher in children with < 90% CPC (HR 4.39, 95% CI 0.999–19.2, p = 0.0501).

Conclusions

The early North American multicenter experience with ETV + CPC in infants demonstrates that the procedure has reasonable safety in selected cases. The degree of CPC achieved might be associated with a surgeon's learning curve and appears to affect success, suggesting that surgeon training might improve results.

Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Curtis J. Rozzelle, Robert P. Naftel, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, David D. Limbrick Jr., Tamara D. Simon, Mandeep Tamber, John C. Wellons III, William E. Whitehead and John R. W. Kestle

OBJECTIVE

High-quality data comparing endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) to shunt and ETV alone in North America are greatly lacking. To address this, the Hydrocephalus Clinical Research Network (HCRN) conducted a prospective study of ETV+CPC in infants. Here, these prospective data are presented and compared to prospectively collected data from a historical cohort of infants treated with shunt or ETV alone.

METHODS

From June 2014 to September 2015, infants (corrected age ≤ 24 months) requiring treatment for hydrocephalus with anatomy suitable for ETV+CPC were entered into a prospective study at 9 HCRN centers. The rate of procedural failure (i.e., the need for repeat hydrocephalus surgery, hydrocephalus-related death, or major postoperative neurological deficit) was determined. These data were compared with a cohort of similar infants who were treated with either a shunt (n = 969) or ETV alone (n = 74) by creating matched pairs on the basis of age and etiology. These data were obtained from the existing prospective HCRN Core Data Project. All patients were observed for at least 6 months.

RESULTS

A total of 118 infants underwent ETV+CPC (median corrected age 1.3 months; common etiologies including myelomeningocele [30.5%], intraventricular hemorrhage of prematurity [22.9%], and aqueductal stenosis [21.2%]). The 6-month success rate was 36%. The most common complications included seizures (5.1%) and CSF leak (3.4%). Important predictors of treatment success in the survival regression model included older age (p = 0.002), smaller preoperative ventricle size (p = 0.009), and greater degree of CPC (p = 0.02). The matching algorithm resulted in 112 matched pairs for ETV+CPC versus shunt alone and 34 matched pairs for ETV+CPC versus ETV alone. ETV+CPC was found to have significantly higher failure rate than shunt placement (p < 0.001). Although ETV+CPC had a similar failure rate compared with ETV alone (p = 0.73), the matched pairs included mostly infants with aqueductal stenosis and miscellaneous other etiologies but very few patients with intraventricular hemorrhage of prematurity.

CONCLUSIONS

Within a large and broad cohort of North American infants, our data show that overall ETV+CPC appears to have a higher failure rate than shunt alone. Although the ETV+CPC results were similar to ETV alone, this comparison was limited by the small sample size and skewed etiological distribution. Within the ETV+CPC group, greater extent of CPC was associated with treatment success, thereby suggesting that there are subgroups who might benefit from the addition of CPC. Further work will focus on identifying these subgroups.

Free access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, Samuel Browd, David Limbrick, Curtis Rozzelle, Mandeep S. Tamber, Tamara D. Simon, Chevis N. Shannon, Richard Holubkov, W. Jerry Oakes, Thomas G. Luerssen, Marion L. Walker, James M. Drake and John R. W. Kestle

Object

Shunt survival may improve when ventricular catheters are placed into the frontal horn or trigone of the lateral ventricle. However, techniques for accurate catheter placement have not been developed. The authors recently reported a prospective study designed to test the accuracy of catheter placement with the assistance of intraoperative ultrasound, but the results were poor (accurate placement in 59%). A major reason for the poor accurate placement rate was catheter movement that occurred between the time of the intraoperative ultrasound image and the first postoperative scan (33% of cases). The control group of non–ultrasound using surgeons also had a low rate of accurate placement (accurate placement in 49%). The authors conducted an exploratory post hoc analysis of patients in their ultrasound study to identify factors associated with either catheter movement or poor catheter placement so that improved surgical techniques for catheter insertion could be developed.

Methods

The authors investigated the following risk factors for catheter movement and poor catheter placement: age, ventricular size, cortical mantle thickness, surgeon experience, surgeon experience with ultrasound prior to trial, shunt entry site, shunt hardware at entry site, ventricular catheter length, and use of an ultrasound probe guide for catheter insertion. Univariate analysis followed by multivariate logistic regression models were used to determine which factors were independent risk factors for either catheter movement or inaccurate catheter location.

Results

In the univariate analyses, only age < 6 months was associated with catheter movement (p = 0.021); cortical mantle thickness < 1 cm was near-significant (p = 0.066). In a multivariate model, age remained significant after adjusting for cortical mantle thickness (OR 8.35, exact 95% CI 1.20–infinity). Univariate analyses of factors associated with inaccurate catheter placement showed that age < 6 months (p = 0.001) and a posterior shunt entry site (p = 0.021) were both associated with poor catheter placement. In a multivariate model, both age < 6 months and a posterior shunt entry site were independent risk factors for poor catheter placement (OR 4.54, 95% CI 1.80–11.42, and OR 2.59, 95% CI 1.14–5.89, respectively).

Conclusions

Catheter movement and inaccurate catheter placement are both more likely to occur in young patients (< 6 months). Inaccurate catheter placement is also more likely to occur in cases involving a posterior shunt entry site than those involving an anterior shunt entry site. Future clinical studies aimed at improving shunt placement techniques must consider the effects of young age and choice of entry site on catheter location.

Restricted access

John C. Wellons III, Chevis N. Shannon, Abhaya V. Kulkarni, Tamara D. Simon, Jay Riva-Cambrin, William E. Whitehead, W. Jerry Oakes, James M. Drake, Thomas G. Luerssen, Marion L. Walker, John R. W. Kestle and for the Hydrocephalus Clinical Research Network

Object

The purpose of this study was to define the incidence of permanent shunt placement and infection in patients who have undergone the 2 most commonly performed temporizing procedures for posthemorrhagic hydrocephalus (PHH) of prematurity: ventriculosubgaleal (VSG) shunt placement and ventricular reservoir placement for intermittent tapping.

Methods

The 4 centers of the Hydrocephalus Clinical Research Network participated in a retrospective chart review of infants with PHH who underwent treatment at each institution between 2001 and 2006. Patients were included if they had received a diagnosis of Grade 3 or 4 intraventricular hemorrhage, weighed < 1500 g at birth, and had received surgical intervention. The authors determined the incidence of conversion from a temporizing device to a permanent shunt, the incidence of CSF infection during temporization, and the 6-month CSF infection rate after permanent shunt placement.

Results

Thirty-one (86%) of 36 patients who received VSG shunts and 61 (69%) of 88 patients who received ventricular reservoirs received permanent CSF diversion with a shunt (p = 0.05). Five patients (14%) in the VSG shunt group had CSF infections during temporization, compared with 11 patients (13%) in the ventricular reservoir group (p = 0.83). The 6-month incidence of permanent shunt infection in the VSG shunt group was 16% (5 of 31), compared with 12% (7 of 61) in the reservoir placement group (p = 0.65). For the first 6 months after permanent shunt placement, infants with no preceding temporizing procedure had an infection rate of 5% (1 of 20 infants) and those who had undergone a temporizing procedure had an infection rate of 13% (12 of 92; p = 0.45).

Conclusions

The use of intermittent tapping of ventricular reservoirs in this population appears to lead to a lower incidence of permanent shunt placement than the use of VSG shunts. The incidence of infection during temporization and for the initial 6 months after conversion appears comparable for both groups. The apparent difference identified in this pilot study requires confirmation in a more rigorous study.

Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, James M. Drake, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead, John R. W. Kestle and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Endoscopic third ventriculostomy (ETV) is now established as a viable treatment option for a subgroup of children with hydrocephalus. Here, the authors report prospective, multicenter results from the Hydrocephalus Clinical Research Network (HCRN) to provide the most accurate determination of morbidity, complication incidence, and efficacy of ETV in children and to determine if intraoperative predictors of ETV success add substantially to preoperative predictors.

METHODS

All children undergoing a first ETV (without choroid plexus cauterization) at 1 of 7 HCRN centers up to June 2013 were included in the study and followed up for a minimum of 18 months. Data, including detailed intraoperative data, were prospectively collected as part of the HCRN's Core Data Project and included details of patient characteristics, ETV failure (need for repeat hydrocephalus surgery), and, in a subset of patients, postoperative complications up to the time of discharge.

RESULTS

Three hundred thirty-six eligible children underwent initial ETV, 18.8% of whom had undergone shunt placement prior to the ETV. The median age at ETV was 6.9 years (IQR 1.7–12.6), with 15.2% of the study cohort younger than 12 months of age. The most common etiologies were aqueductal stenosis (24.8%) and midbrain or tectal lesions (21.2%). Visible forniceal injury (16.6%) was more common than previously reported, whereas severe bleeding (1.8%), thalamic contusion (1.8%), venous injury (1.5%), hypothalamic contusion (1.5%), and major arterial injury (0.3%) were rare. The most common postoperative complications were CSF leak (4.4%), hyponatremia (3.9%), and pseudomeningocele (3.9%). New neurological deficit occurred in 1.5% cases, with 0.5% being permanent.

One hundred forty-one patients had documented failure of their ETV requiring repeat hydrocephalus surgery during follow-up, 117 of them during the first 6 months postprocedure. Kaplan-Meier rates of 30-day, 90-day, 6-month, 1-year, and 2-year failure-free survival were 73.7%, 66.7%, 64.8%, 61.7%, and 57.8%, respectively. According to multivariate modeling, the preoperative ETV Success Score (ETVSS) was associated with ETV success (p < 0.001), as was the intraoperative ability to visualize a “naked” basilar artery (p = 0.023).

CONCLUSIONS

The authors' documented experience represents the most detailed account of ETV results in North America and provides the most accurate picture to date of ETV success and complications, based on contemporaneously collected prospective data. Serious complications with ETV are low. In addition to the ETVSS, visualization of a naked basilar artery is predictive of ETV success.

Free access

Jay Riva-Cambrin, John R. W. Kestle, Richard Holubkov, Jerry Butler, Abhaya V. Kulkarni, James Drake, William E. Whitehead, John C. Wellons III, Chevis N. Shannon, Mandeep S. Tamber, David D. Limbrick Jr., Curtis Rozzelle, Samuel R. Browd, Tamara D. Simon and The Hydrocephalus Clinical Research Network

OBJECT

The rate of CSF shunt failure remains unacceptably high. The Hydrocephalus Clinical Research Network (HCRN) conducted a comprehensive prospective observational study of hydrocephalus management, the aim of which was to isolate specific risk factors for shunt failure.

METHODS

The study followed all first-time shunt insertions in children younger than 19 years at 6 HCRN centers. The HCRN Investigator Committee selected, a priori, 21 variables to be examined, including clinical, radiographic, and shunt design variables. Shunt failure was defined as shunt revision, subsequent endoscopic third ventriculostomy, or shunt infection. Important a priori–defined risk factors as well as those significant in univariate analyses were then tested for independence using multivariate Cox proportional hazard modeling.

RESULTS

A total of 1036 children underwent initial CSF shunt placement between April 2008 and December 2011. Of these, 344 patients experienced shunt failure, including 265 malfunctions and 79 infections. The mean and median length of follow-up for the entire cohort was 400 days and 264 days, respectively. The Cox model found that age younger than 6 months at first shunt placement (HR 1.6 [95% CI 1.1–2.1]), a cardiac comorbidity (HR 1.4 [95% CI 1.0–2.1]), and endoscopic placement (HR 1.9 [95% CI 1.2–2.9]) were independently associated with reduced shunt survival. The following had no independent associations with shunt survival: etiology, payer, center, valve design, valve programmability, the use of ultrasound or stereotactic guidance, and surgeon experience and volume.

CONCLUSIONS

This is the largest prospective study reported on children with CSF shunts for hydrocephalus. It confirms that a young age and the use of the endoscope are risk factors for first shunt failure and that valve type has no impact. A new risk factor—an existing cardiac comorbidity—was also associated with shunt failure.

Restricted access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Jerry Butler, Samuel R. Browd, James M. Drake, Richard Holubkov, John R. W. Kestle, David D. Limbrick, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead and for the Hydrocephalus Clinical Research Network

Object

The Hydrocephalus Clinical Research Network (HCRN), which comprises 7 pediatric neurosurgical centers in North America, provides a unique multicenter assessment of the current outcomes of CSF shunting in nonselected patients. The authors present the initial results for this cohort and compare them with results from prospective multicenter trials performed in the 1990s.

Methods

Analysis was restricted to patients with newly diagnosed hydrocephalus undergoing shunting for the first time. Detailed perioperative data from 2008 through 2012 for all HCRN centers were prospectively collected and centrally stored by trained research coordinators. Historical control data were obtained from the Shunt Design Trial (1993–1995) and the Endoscopic Shunt Insertion Trial (1996–1999). The primary outcome was time to first shunt failure, which was determined by using Cox regression survival analysis.

Results

Mean age of the 1184 patients in the HCRN cohort was older than mean age of the 720 patients in the historical cohort (2.51 years vs 1.60 years, p < 0.0001). The distribution of etiologies differed (p < 0.0001, chi-square test); more tumors and fewer myelomeningoceles caused the hydrocephalus in the HCRN cohort patients. The hazard ratio for first shunt failure significantly favored the HCRN cohort, even after the model was adjusted for the prognostic effects of age and etiology (adjusted HR 0.82, 95% CI 0.69–0.96).

Conclusions

Current outcomes of shunting in general pediatric neurosurgery practice have improved over those from the 1990s, although the reasons remain unclear.