Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jeffrey Balzer x
  • By Author: Thirumala, Parthasarathy x
Clear All Modify Search
Full access

Parthasarathy Thirumala, Andrew M. Frederickson, Jeffrey Balzer, Donald Crammond, Miguel E. Habeych, Yue-Fang Chang and Raymond F. Sekula Jr.

OBJECT

Microvascular decompression is a safe and effective procedure to treat hemifacial spasm, but the operation poses some risk to the patient’s hearing. While severe sensorineural hearing loss across all frequencies occurs at a low rate in experienced hands, a recent study suggests that as many as one-half of patients who undergo this procedure may experience ipsilateral high-frequency hearing loss (HFHL), and as many as one-quarter may experience contralateral HFHL. While it has been suggested that drill-related noise may account for this finding, this study was designed to examine the effect of a number of techniques designed to protect the vestibulocochlear nerve from operative manipulation on the incidence of HFHL.

METHODS

Pure-tone audiometry was performed both preoperatively and postoperatively on 67 patients who underwent microvascular decompression for hemifacial spasm during the study period. A change of greater than 10 dB at either 4 kHz or 8 kHz was considered to be HFHL. Additionally, the authors analyzed intraoperative brainstem auditory evoked potentials from this patient cohort.

RESULTS

The incidence of ipsilateral HFHL in this cohort was 7.4%, while the incidence of contralateral HFHL was 4.5%. One patient (1.5%; also included in the HFHL group) experienced an ipsilateral nonserviceable hearing loss.

CONCLUSIONS

The reduced incidence of HFHL in this study suggests that technical modifications including performing the procedure without the use of fixed retraction may greatly reduce, but not eliminate, the occurrence of HFHL following microvascular decompression for hemifacial spasm.

Full access

Parthasarathy Thirumala, Kristin Meigh, Navya Dasyam, Preethi Shankar, Kanika R. K. Sarma, Deepika R. K. Sarma, Miguel Habeych, Donald Crammond and Jeffrey Balzer

OBJECT

The primary aim of this study was to evaluate the incidence and discuss the pathogenesis of high-frequency hearing loss (HFHL) after microvascular decompression (MVD) for trigeminal neuralgia (TGN), glossopharyngeal neuralgia (GPN), or geniculate neuralgia (GN).

METHODS

The authors analyzed preoperative and postoperative audiogram data and brainstem auditory evoked potentials (BAEPs) from 93 patients with TGN, 6 patients with GPN, and 8 patients with GN who underwent MVD. Differences in pure tone audiometry > 10 dB at frequencies of 0.25, 0.5, 1, 2, 4, and 8 kHz were calculated preoperatively and postoperatively for both the ipsilateral and the contralateral sides. Intraoperative monitoring records were analyzed and compared with the incidence of HFHL, which was defined as a change in pure tone audiometry > 10 dB at frequencies of 4 and 8 kHz.

RESULTS

The incidence of HFHL was 30.84% on the side ipsilateral to the surgery and 20.56% on the contralateral side. Of the 47 patients with HFHL, 20 had conductive hearing loss, and 2 experienced nonserviceable hearing loss after the surgery. The incidences of HFHL on the ipsilateral side at 4 and 8 kHz were 17.76% and 25.23%, respectively, and 8.41% and 15.89%, respectively, on the contralateral side. As the audiometric frequency increased, the number of patients with hearing loss increased. No significant postoperative difference was found between patients with and without HFHL in intraoperative BAEP waveforms. Sex, age, and affected side were not associated with an increase in the incidence of hearing loss.

CONCLUSIONS

High-frequency hearing loss occurred after MVD for TGN, GPN, or GN, and the greatest incidence occurred on the ipsilateral side. This hearing loss may be a result of drill-induced noise and/or transient loss of cerebrospinal fluid during the course of the procedure. Changes in intraoperative BAEP waveforms were not useful in predicting HFHL after MVD. Repeated postoperative audiological examinations may be useful in assessing the prognosis of HFHL.

Restricted access

Tingting Ying, Parthasarathy Thirumala, Aalap Shah, Tara Nikonow, Kelley Wichman, Maura Holmes, Barry Hirsch, Yuefang Chang, Paul Gardner, Miguel Habeych, Donald J. Crammond, Lois Burkhart, Michael Horowitz and Jeffrey Balzer

Object

The primary aim of this study was to evaluate the incidence and discuss the pathogenesis of high-frequency hearing loss (HFHL) after microvascular decompression (MVD) for hemifacial spasm (HFS).

Methods

Preoperative and postoperative audiogram data and brainstem auditory evoked potentials (BAEPs) from 94 patients who underwent MVD for HFS were analyzed. Pure tone audiometry at 0.25–2 kHz, 4 kHz, and 8 kHz was calculated for all individuals pre- and postoperatively ipsilateral and contralaterally. Intraoperative neurophysiological data were reviewed independently. An HFHL was defined as a change in pure tone audiometry of more than 10 dB at frequencies of 4 and 8 kHz.

Results

The incidence of HFHL was 50.00% and 25.53% ipsilateral and contralateral to the side of surgery, respectively. The incidence of HFHL adjusted for conductive and nonserviceable hearing loss was 26.6% ipsilaterally. The incidence of HFHL at 4 and 8 kHz on the ipsilateral side was 37.23% and 45.74%, respectively, and it was 10.64% and 25.53%, respectively, on the contralateral side. Maximal change in interpeak latency Waves I–V compared with baseline was the only variable significantly different between groups (p < 0.05). Sex, age, and side did not increase the risk of HFHL. Stepwise logistic regression analysis did not find any changes in intraoperative BAEPs to increase the risk of HFHL.

Conclusions

High-frequency hearing loss occurs in a significant number of patients following MVD surgery for HFS. Drill-induced noise and transient loss of CSF during surgery may impair hearing in the high-frequency ranges on both the ipsilateral and contralateral sides, with the ipsilateral side being more affected. Changes in intraoperative BAEPs during MVD for HFS were not useful in predicting HFHL. Follow-up studies and repeat audiological examinations may be helpful in evaluating the time course and prognosis of HFHL. Prospective studies focusing on decreasing intraoperative noise exposure, as well as auditory shielding devices, will establish causation and allow the team to intervene appropriately to decrease the risk of HFHL.