Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jason Barber x
  • By Author: Temkin, Nancy x
Clear All Modify Search
Restricted access

Aziz S. Alali, Nancy Temkin, Monica S. Vavilala, Abhijit V. Lele, Jason Barber, Sureyya Dikmen and Randall M. Chesnut

OBJECTIVE

The aim of this study was to examine the relationship between early arterial oxygenation thresholds and long-term outcome after severe traumatic brain injury (TBI).

METHODS

In a post hoc analysis of a randomized trial, adults with severe TBI were classified based on exposure to different levels of arterial oxygenation as measured using the average of arterial partial pressure of oxygen (PaO2) values obtained within 24 hours of admission. Potentially important PaO2 thresholds were defined a priori. The primary outcome was Glasgow Outcome Scale–Extended (GOSE) score at 6 months. Secondary outcomes were cognitive outcomes measured using a battery of 9 neuropsychological tests administered at 6 months, and 6-month mortality.

RESULTS

In adjusted analyses, oxygenation thresholds of 150 and 200 mm Hg were associated with better functional outcome at 6 months (adjusted OR for better functional outcome on GOSE 1.82 [95% CI 1.12–2.94] and 1.59 [95% CI 1.06–2.37], respectively) and improved cognitive outcome at 6 months (adjusted beta coefficients for better cognitive percentile across 9 neuropsychological tests: 6.9 [95% CI 1.3–12.5] and 6.8 [95% CI 2.4–11.3], respectively). There was no significant association between oxygenation level and 6-month mortality except at a PaO2 threshold of 200 mm Hg (OR for death 0.36, 95% CI 0.18–0.71). Higher or lower oxygenation thresholds were not associated with functional or cognitive outcome.

CONCLUSIONS

In this observational study, the relationship between early arterial oxygenation and long-term functional and cognitive TBI outcomes appears to be U-shaped. Mild levels of hyperoxemia within the first 24 hours after injury were associated with better long-term functional and cognitive outcomes. These findings highlight the importance of examining balanced oxygen supplementation as a potential strategy to improve TBI outcomes in future research.

Restricted access

Aziz S. Alali, Nancy Temkin, Jason Barber, Jim Pridgeon, Kelley Chaddock, Sureyya Dikmen, Peter Hendrickson, Walter Videtta, Silvia Lujan, Gustavo Petroni, Nahuel Guadagnoli, Zulma Urbina and Randall M. Chesnut

OBJECTIVE

While existing guidelines support the treatment of intracranial hypertension in severe traumatic brain injury (TBI), it is unclear when to suspect and initiate treatment for high intracranial pressure (ICP). The objective of this study was to derive a clinical decision rule that accurately predicts intracranial hypertension.

METHODS

Using Delphi methods, the authors identified a set of potential predictors of intracranial hypertension and a clinical decision rule a priori by consensus among a group of 43 neurosurgeons and intensivists who have extensive experience managing severe TBI without ICP monitoring. To validate these predictors, the authors used data from a Latin American trial (n = 150; BEST TRIP). To report on the performance of the rule, they calculated sensitivity, specificity, and positive and negative predictive values with 95% confidence intervals. In a secondary analysis, the rule was validated using data from a North American trial (n = 131; COBRIT).

RESULTS

The final predictors and the clinical decision rule were approved by 97% of participants in the consensus working group. The predictors are divided into major and minor criteria. High ICP would be considered suspected in the presence of 1 major or ≥ 2 minor criteria. Major criteria are: compressed cisterns (CT classification of Marshall diffuse injury [DI] III), midline shift > 5 mm (Marshall DI IV), or nonevacuated mass lesion. Minor criteria are: Glasgow Coma Scale (GCS) motor score ≤ 4, pupillary asymmetry, abnormal pupillary reactivity, or Marshall DI II. The area under the curve for the logistic regression model that contains all the predictors was 0.86. When high ICP was defined as > 22 mm Hg, the decision rule performed with a sensitivity of 93.9% (95% CI 85.0%–98.3%), a specificity of 42.3% (95% CI 31.7%–53.6%), a positive predictive value of 55.5% (95% CI 50.7%–60.2%), and a negative predictive value of 90% (95% CI 77.1%–96.0%). The sensitivity of the clinical decision rule improved with higher ICP cutoffs up to a sensitivity of 100% when intracranial hypertension was defined as ICP > 30 mm Hg. Similar results were found in the North American cohort.

CONCLUSIONS

A simple clinical decision rule based on a combination of clinical and imaging findings was found to be highly sensitive in distinguishing patients with severe TBI who would suffer intracranial hypertension. It could be used to identify patients who require ICP monitoring in high-resource settings or start ICP-lowering treatment in environments where resource limitations preclude invasive monitoring.

Clinical trial registration no.: NCT02059941 (clinicaltrials.gov).