Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: John R. W. Kestle x
  • By Author: Tamber, Mandeep S. x
Clear All Modify Search
Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Samuel R. Browd, James M. Drake, Richard Holubkov, John R. W. Kestle, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III and William E. Whitehead

Object

The use of endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) has been advocated as an alternative to CSF shunting in infants with hydrocephalus. There are limited reports of this procedure in the North American population, however. The authors provide a retrospective review of the experience with combined ETV + CPC within the North American Hydrocephalus Clinical Research Network (HCRN).

Methods

All children (< 2 years old) who underwent an ETV + CPC at one of 7 HCRN centers before November 2012 were included. Data were collected retrospectively through review of hospital records and the HCRN registry. Comparisons were made to a contemporaneous cohort of 758 children who received their first shunt at < 2 years of age within the HCRN.

Results

Thirty-six patients with ETV + CPC were included (13 with previous shunt). The etiologies of hydrocephalus were as follows: intraventricular hemorrhage of prematurity (9 patients), aqueductal stenosis (8), myelomeningocele (4), and other (15). There were no major intraoperative or early postoperative complications. There were 2 postoperative CSF infections. There were 2 deaths unrelated to hydrocephalus and 1 death from seizure. In 18 patients ETV + CPC failed at a median time of 30 days after surgery (range 4–484 days). The actuarial 3-, 6-, and 12-month success for ETV + CPC was 58%, 52%, and 52%. Time to treatment failure was slightly worse for the 36 patients with ETV + CPC compared with the 758 infants treated with shunts (p = 0.012). Near-complete CPC (≥ 90%) was achieved in 11 cases (31%) overall, but in 50% (10 of 20 cases) in 2012 versus 6% (1 of 16 cases) before 2012 (p = 0.009). Failure was higher in children with < 90% CPC (HR 4.39, 95% CI 0.999–19.2, p = 0.0501).

Conclusions

The early North American multicenter experience with ETV + CPC in infants demonstrates that the procedure has reasonable safety in selected cases. The degree of CPC achieved might be associated with a surgeon's learning curve and appears to affect success, suggesting that surgeon training might improve results.

Free access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, Samuel Browd, David Limbrick, Curtis Rozzelle, Mandeep S. Tamber, Tamara D. Simon, Chevis N. Shannon, Richard Holubkov, W. Jerry Oakes, Thomas G. Luerssen, Marion L. Walker, James M. Drake and John R. W. Kestle

Object

Shunt survival may improve when ventricular catheters are placed into the frontal horn or trigone of the lateral ventricle. However, techniques for accurate catheter placement have not been developed. The authors recently reported a prospective study designed to test the accuracy of catheter placement with the assistance of intraoperative ultrasound, but the results were poor (accurate placement in 59%). A major reason for the poor accurate placement rate was catheter movement that occurred between the time of the intraoperative ultrasound image and the first postoperative scan (33% of cases). The control group of non–ultrasound using surgeons also had a low rate of accurate placement (accurate placement in 49%). The authors conducted an exploratory post hoc analysis of patients in their ultrasound study to identify factors associated with either catheter movement or poor catheter placement so that improved surgical techniques for catheter insertion could be developed.

Methods

The authors investigated the following risk factors for catheter movement and poor catheter placement: age, ventricular size, cortical mantle thickness, surgeon experience, surgeon experience with ultrasound prior to trial, shunt entry site, shunt hardware at entry site, ventricular catheter length, and use of an ultrasound probe guide for catheter insertion. Univariate analysis followed by multivariate logistic regression models were used to determine which factors were independent risk factors for either catheter movement or inaccurate catheter location.

Results

In the univariate analyses, only age < 6 months was associated with catheter movement (p = 0.021); cortical mantle thickness < 1 cm was near-significant (p = 0.066). In a multivariate model, age remained significant after adjusting for cortical mantle thickness (OR 8.35, exact 95% CI 1.20–infinity). Univariate analyses of factors associated with inaccurate catheter placement showed that age < 6 months (p = 0.001) and a posterior shunt entry site (p = 0.021) were both associated with poor catheter placement. In a multivariate model, both age < 6 months and a posterior shunt entry site were independent risk factors for poor catheter placement (OR 4.54, 95% CI 1.80–11.42, and OR 2.59, 95% CI 1.14–5.89, respectively).

Conclusions

Catheter movement and inaccurate catheter placement are both more likely to occur in young patients (< 6 months). Inaccurate catheter placement is also more likely to occur in cases involving a posterior shunt entry site than those involving an anterior shunt entry site. Future clinical studies aimed at improving shunt placement techniques must consider the effects of young age and choice of entry site on catheter location.

Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, James M. Drake, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead, John R. W. Kestle and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Endoscopic third ventriculostomy (ETV) is now established as a viable treatment option for a subgroup of children with hydrocephalus. Here, the authors report prospective, multicenter results from the Hydrocephalus Clinical Research Network (HCRN) to provide the most accurate determination of morbidity, complication incidence, and efficacy of ETV in children and to determine if intraoperative predictors of ETV success add substantially to preoperative predictors.

METHODS

All children undergoing a first ETV (without choroid plexus cauterization) at 1 of 7 HCRN centers up to June 2013 were included in the study and followed up for a minimum of 18 months. Data, including detailed intraoperative data, were prospectively collected as part of the HCRN's Core Data Project and included details of patient characteristics, ETV failure (need for repeat hydrocephalus surgery), and, in a subset of patients, postoperative complications up to the time of discharge.

RESULTS

Three hundred thirty-six eligible children underwent initial ETV, 18.8% of whom had undergone shunt placement prior to the ETV. The median age at ETV was 6.9 years (IQR 1.7–12.6), with 15.2% of the study cohort younger than 12 months of age. The most common etiologies were aqueductal stenosis (24.8%) and midbrain or tectal lesions (21.2%). Visible forniceal injury (16.6%) was more common than previously reported, whereas severe bleeding (1.8%), thalamic contusion (1.8%), venous injury (1.5%), hypothalamic contusion (1.5%), and major arterial injury (0.3%) were rare. The most common postoperative complications were CSF leak (4.4%), hyponatremia (3.9%), and pseudomeningocele (3.9%). New neurological deficit occurred in 1.5% cases, with 0.5% being permanent.

One hundred forty-one patients had documented failure of their ETV requiring repeat hydrocephalus surgery during follow-up, 117 of them during the first 6 months postprocedure. Kaplan-Meier rates of 30-day, 90-day, 6-month, 1-year, and 2-year failure-free survival were 73.7%, 66.7%, 64.8%, 61.7%, and 57.8%, respectively. According to multivariate modeling, the preoperative ETV Success Score (ETVSS) was associated with ETV success (p < 0.001), as was the intraoperative ability to visualize a “naked” basilar artery (p = 0.023).

CONCLUSIONS

The authors' documented experience represents the most detailed account of ETV results in North America and provides the most accurate picture to date of ETV success and complications, based on contemporaneously collected prospective data. Serious complications with ETV are low. In addition to the ETVSS, visualization of a naked basilar artery is predictive of ETV success.

Restricted access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Jerry Butler, Samuel R. Browd, James M. Drake, Richard Holubkov, John R. W. Kestle, David D. Limbrick, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead and for the Hydrocephalus Clinical Research Network

Object

The Hydrocephalus Clinical Research Network (HCRN), which comprises 7 pediatric neurosurgical centers in North America, provides a unique multicenter assessment of the current outcomes of CSF shunting in nonselected patients. The authors present the initial results for this cohort and compare them with results from prospective multicenter trials performed in the 1990s.

Methods

Analysis was restricted to patients with newly diagnosed hydrocephalus undergoing shunting for the first time. Detailed perioperative data from 2008 through 2012 for all HCRN centers were prospectively collected and centrally stored by trained research coordinators. Historical control data were obtained from the Shunt Design Trial (1993–1995) and the Endoscopic Shunt Insertion Trial (1996–1999). The primary outcome was time to first shunt failure, which was determined by using Cox regression survival analysis.

Results

Mean age of the 1184 patients in the HCRN cohort was older than mean age of the 720 patients in the historical cohort (2.51 years vs 1.60 years, p < 0.0001). The distribution of etiologies differed (p < 0.0001, chi-square test); more tumors and fewer myelomeningoceles caused the hydrocephalus in the HCRN cohort patients. The hazard ratio for first shunt failure significantly favored the HCRN cohort, even after the model was adjusted for the prognostic effects of age and etiology (adjusted HR 0.82, 95% CI 0.69–0.96).

Conclusions

Current outcomes of shunting in general pediatric neurosurgery practice have improved over those from the 1990s, although the reasons remain unclear.

Free access

Jay Riva-Cambrin, John R. W. Kestle, Richard Holubkov, Jerry Butler, Abhaya V. Kulkarni, James Drake, William E. Whitehead, John C. Wellons III, Chevis N. Shannon, Mandeep S. Tamber, David D. Limbrick Jr., Curtis Rozzelle, Samuel R. Browd, Tamara D. Simon and The Hydrocephalus Clinical Research Network

OBJECT

The rate of CSF shunt failure remains unacceptably high. The Hydrocephalus Clinical Research Network (HCRN) conducted a comprehensive prospective observational study of hydrocephalus management, the aim of which was to isolate specific risk factors for shunt failure.

METHODS

The study followed all first-time shunt insertions in children younger than 19 years at 6 HCRN centers. The HCRN Investigator Committee selected, a priori, 21 variables to be examined, including clinical, radiographic, and shunt design variables. Shunt failure was defined as shunt revision, subsequent endoscopic third ventriculostomy, or shunt infection. Important a priori–defined risk factors as well as those significant in univariate analyses were then tested for independence using multivariate Cox proportional hazard modeling.

RESULTS

A total of 1036 children underwent initial CSF shunt placement between April 2008 and December 2011. Of these, 344 patients experienced shunt failure, including 265 malfunctions and 79 infections. The mean and median length of follow-up for the entire cohort was 400 days and 264 days, respectively. The Cox model found that age younger than 6 months at first shunt placement (HR 1.6 [95% CI 1.1–2.1]), a cardiac comorbidity (HR 1.4 [95% CI 1.0–2.1]), and endoscopic placement (HR 1.9 [95% CI 1.2–2.9]) were independently associated with reduced shunt survival. The following had no independent associations with shunt survival: etiology, payer, center, valve design, valve programmability, the use of ultrasound or stereotactic guidance, and surgeon experience and volume.

CONCLUSIONS

This is the largest prospective study reported on children with CSF shunts for hydrocephalus. It confirms that a young age and the use of the endoscope are risk factors for first shunt failure and that valve type has no impact. A new risk factor—an existing cardiac comorbidity—was also associated with shunt failure.

Free access

John R. W. Kestle, Richard Holubkov, D. Douglas Cochrane, Abhaya V. Kulkarni, David D. Limbrick Jr., Thomas G. Luerssen, W. Jerry Oakes, Jay Riva-Cambrin, Curtis Rozzelle, Tamara D. Simon, Marion L. Walker, John C. Wellons III, Samuel R. Browd, James M. Drake, Chevis N. Shannon, Mandeep S. Tamber, William E. Whitehead and The Hydrocephalus Clinical Research Network

OBJECT

In a previous report by the same research group (Kestle et al., 2011), compliance with an 11-step protocol was shown to reduce CSF shunt infection at Hydrocephalus Clinical Research Network (HCRN) centers (from 8.7% to 5.7%). Antibiotic-impregnated catheters (AICs) were not part of the protocol but were used off protocol by some surgeons. The authors therefore began using a new protocol that included AICs in an effort to reduce the infection rate further.

METHODS

The new protocol was implemented at HCRN centers on January 1, 2012, for all shunt procedures (excluding external ventricular drains [EVDs], ventricular reservoirs, and subgaleal shunts). Procedures performed up to September 30, 2013, were included (21 months). Compliance with the protocol and outcome events up to March 30, 2014, were recorded. The definition of infection was unchanged from the authors' previous report.

RESULTS

A total of 1935 procedures were performed on 1670 patients at 8 HCRN centers. The overall infection rate was 6.0% (95% CI 5.1%–7.2%). Procedure-specific infection rates varied (insertion 5.0%, revision 5.4%, insertion after EVD 8.3%, and insertion after treatment of infection 12.6%). Full compliance with the protocol occurred in 77% of procedures. The infection rate was 5.0% after compliant procedures and 8.7% after noncompliant procedures (p = 0.005). The infection rate when using this new protocol (6.0%, 95% CI 5.1%–7.2%) was similar to the infection rate observed using the authors' old protocol (5.7%, 95% CI 4.6%–7.0%).

CONCLUSIONS

CSF shunt procedures performed in compliance with a new infection prevention protocol at HCRN centers had a lower infection rate than noncompliant procedures. Implementation of the new protocol (including AICs) was associated with a 6.0% infection rate, similar to the infection rate of 5.7% from the authors' previously reported protocol. Based on the current data, the role of AICs compared with other infection prevention measures is unclear.

Free access

William E. Whitehead, Jay Riva-Cambrin, Abhaya V. Kulkarni, John C. Wellons III, Curtis J. Rozzelle, Mandeep S. Tamber, David D. Limbrick Jr., Samuel R. Browd, Robert P. Naftel, Chevis N. Shannon, Tamara D. Simon, Richard Holubkov, Anna Illner, D. Douglas Cochrane, James M. Drake, Thomas G. Luerssen, W. Jerry Oakes and John R. W. Kestle

OBJECTIVE

Accurate placement of ventricular catheters may result in prolonged shunt survival, but the best target for the hole-bearing segment of the catheter has not been rigorously defined. The goal of the study was to define a target within the ventricle with the lowest risk of shunt failure.

METHODS

Five catheter placement variables (ventricular catheter tip location, ventricular catheter tip environment, relationship to choroid plexus, catheter tip holes within ventricle, and crosses midline) were defined, assessed for interobserver agreement, and evaluated for their effect on shunt survival in univariate and multivariate analyses. De-identified subjects from the Shunt Design Trial, the Endoscopic Shunt Insertion Trial, and a Hydrocephalus Clinical Research Network study on ultrasound-guided catheter placement were combined (n = 858 subjects, all first-time shunt insertions, all patients < 18 years old). The first postoperative brain imaging study was used to determine ventricular catheter placement for each of the catheter placement variables.

RESULTS

Ventricular catheter tip location, environment, catheter tip holes within the ventricle, and crosses midline all achieved sufficient interobserver agreement (κ > 0.60). In the univariate survival analysis, however, only ventricular catheter tip location was useful in distinguishing a target within the ventricle with a survival advantage (frontal horn; log-rank, p = 0.0015). None of the other catheter placement variables yielded a significant survival advantage unless they were compared with catheter tips completely not in the ventricle. Cox regression analysis was performed, examining ventricular catheter tip location with age, etiology, surgeon, decade of surgery, and catheter entry site (anterior vs posterior). Only age (p < 0.001) and entry site (p = 0.005) were associated with shunt survival; ventricular catheter tip location was not (p = 0.37). Anterior entry site lowered the risk of shunt failure compared with posterior entry site by approximately one-third (HR 0.65, 95% CI 0.51–0.83).

CONCLUSIONS

This analysis failed to identify an ideal target within the ventricle for the ventricular catheter tip. Unexpectedly, the choice of an anterior versus posterior catheter entry site was more important in determining shunt survival than the location of the ventricular catheter tip within the ventricle. Entry site may represent a modifiable risk factor for shunt failure, but, due to inherent limitations in study design and previous clinical research on entry site, a randomized controlled trial is necessary before treatment recommendations can be made.