Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lars Edvinsson x
  • By Author: Svendgaard, Niels-Aage x
Clear All Modify Search
Restricted access

Saema Ansar, Niels-Aage Svendgaard and Lars Edvinsson


Cerebral vasospasm following subarachnoid hemorrhage (SAH) leads to reduced cerebral blood flow (CBF) and to cerebral ischemia, in some cases even producing infarction and long-term disability. The goal of the present study was to investigate the hypothesis that inhibition of neurokinin-1 receptors (NK1Rs) by administration of L-822429 blunts the decrease in CBF as well as cerebrovascular receptor upregulation in an animal model of SAH.


Subarachnoid hemorrhage was induced in rats by injection of 250 μl of blood into the prechiasmatic cistern. The NK1R inhibitor L-822429 was injected intracisternally 30 minutes and 24 hours after the induction of SAH. Two days after SAH induction, the basilar arteries were harvested, and contractile responses to endothelin-1 (ET-1, an ETA- and ETB-receptor agonist) and 5-carboxamidotryptamine (a 5-hydroxytryptamine-1 [5-HT1]-receptor agonist) were investigated using sensitive myographs. To determine whether NK1R inhibition had an influence on local CBF after post-SAH, a quantitative autoradiographic technique was used.

After SAH, the vascular receptor phenotype was changed in cerebral arteries through upregulation of contractile ETB and 5-HT1B receptors, while regional and total CBF were markedly reduced. Treatment with the selective NK1R inhibitor L-822429 prevented both the receptor upregulation and the reduction in regional and global CBF.


The data reveal the coregulation of vascular receptor changes and blood flow effects, and also show that interaction with a small-molecule NK1R antagonist is a promising area of focus for the development of specific treatments for SAH.

Restricted access

Jacob Hansen-Schwartz, Natalie Løvland Hoel, Cang-Bao Xu, Niels-Aage Svendgaard and Lars Edvinsson

Object. Cerebral vasospasm following subarachnoid hemorrhage (SAH) leads to reduced blood flow in the brain. Inspired by organ culture—induced changes in the receptor phenotype of cerebral arteries, the authors investigated possible changes in the 5-hydroxytryptamine (HT) receptor phenotype after experimental SAH.

Methods. Experimental SAH was induced in rats by using an autologous prechiasmatic injection of arterial blood. Two days later, the middle cerebral artery (MCA), posterior communicating artery (PCoA), and basilar artery (BA) were harvested and examined functionally with the aid of a sensitive in vitro pharmacological method and molecularly by performing quantitative real-time reverse transcription—polymerase chain reaction (PCR).

In the MCA and BA the 5-HT1B receptor was upregulated, as determined through both functional and molecular analysis. In response to selective 5-HT1 receptor agonists both the negative logarithm of the 50% effective concentration was increased (one log unit in the MCA and one half unit in the BA), as was the agonist's potency (increased by 50% in the MCA and doubled in the BA). In addition, the authors found an approximately fourfold increase in the number of copies of messenger RNA coding for the 5-HT1B receptor as determined by quantitative real-time PCR. In the PCoA no upregulation of the 5-HT1B receptor was observed.

Conclusions. Changes in the receptor phenotype in favor of contractile receptors may well represent the end stage in a sequence of events leading from SAH to the actual development of cerebral vasospasm. Insight into the mechanism of upregulation may provide new targets for developing specific treatment against cerebral vasospasm.