Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Philip E. Stieg x
  • By Author: Souweidane, Mark M. x
Clear All Modify Search
Full access

Peter F. Morgenstern, Caitlin E. Hoffman, Gary Kocharian, Ranjodh Singh, Philip E. Stieg and Mark M. Souweidane

OBJECT

The optimal method for detecting recurrent arteriovenous malformations (AVMs) in children is unknown. An inherent preference exists for MR angiography (MRA) surveillance rather than arteriography. The validity of this strategy is uncertain.

METHODS

A retrospective chart review was performed on pediatric patients treated for cerebral AVMs at a single institution from 1998 to 2012. Patients with complete obliteration of the AVM nidus after treatment and more than 12 months of follow-up were included in the analysis. Data collection focused on recurrence rates, associated risk factors, and surveillance methods.

RESULTS

A total of 45 patients with a mean age of 11.7 years (range 0.5–18 years) were treated for AVMs via surgical, endovascular, radiosurgical, or combined approaches. Total AVM obliteration on posttreatment digital subtraction angiography (DSA) was confirmed in 27 patients, of whom the 20 with more than 12 months of follow-up were included in subsequent analysis. The mean follow-up duration in this cohort was 5.75 years (median 5.53 years, range 1.11–10.64 years). Recurrence occurred in 3 of 20 patients (15%). Two recurrences were detected by surveillance DSA and 1 at the time of rehemorrhage. No recurrences were detected by MRA. Median time to recurrence was 33.6 months (range 19–71 months). Two patients (10%) underwent follow-up DSA, 5 (25%) had DSA and MRI/MRA, 9 (45%) had MRI/MRA only, 1 (5%) had CT angiography only, and 3 (15%) had no imaging within the first 3 years of follow-up. After 5 years posttreatment, 2 patients (10%) were followed with MRI/MRA only, 2 (10%) with DSA only, and 10 (50%) with continued DSA and MRI/MRA.

CONCLUSIONS

AVM recurrence in children occurred at a median of 33.6 months, when MRA was more commonly used for surveillance, but failed to detect any recurrences. A recurrence rate of 15% may be an underestimate given the reliance on surveillance MRA over angiography. A new surveillance strategy is proposed, taking into account exposure to diagnostic radiation and the potential for catastrophic rehemorrhage.

Restricted access

Sacit Bulent Omay, Yu-Ning Chen, Joao Paulo Almeida, Armando Saul Ruiz-Treviño, John A. Boockvar, Philip E. Stieg, Jeffrey P. Greenfield, Mark M. Souweidane, Ashutosh Kacker, David J. Pisapia, Vijay K. Anand and Theodore H. Schwartz

OBJECTIVE

Exome sequencing studies have recently demonstrated that papillary craniopharyngiomas (PCPs) and adamantinomatous craniopharyngiomas (ACPs) have distinct genetic origins, each primarily driven by mutually exclusive alterations: either BRAF (V600E), observed in 95% of PCPs, or CTNNB1, observed in 75%–96% of ACPs. How the presence of these molecular signatures, or their absence, correlates with clinical, radiographic, and outcome variables is unknown.

METHODS

The pathology records for patients who underwent surgery for craniopharyngiomas between May 2000 and March 2015 at Weill Cornell Medical College were reviewed. Craniopharyngiomas were identified and classified as PCP or ACP. Patients were placed into 1 of 3 groups based on their genomic mutations: BRAF mutation only, CTNNB1 mutation only, and tumors with neither of these mutations detected (not detected [ND]). Demographic, radiological, and clinical variables were collected, and their correlation with each genomic group was tested.

RESULTS

Histology correlated strongly with mutation group. All BRAF tumors with mutations were PCPs, and all CTNNB1 with mutations and ND tumors were ACPs. Preoperative and postoperative clinical symptoms and radiographic features did not correlate with any mutation group. There was a statistically significant relationship (p = 0.0323) between the age group (pediatric vs adult) and the mutation groups. The ND group tumors were more likely to involve the sella (p = 0.0065).

CONCLUSIONS

The mutation signature in craniopharyngioma is highly predictive of histology. The subgroup of tumors in which these 2 mutations are not detected is more likely to occur in children, be located in the sella, and be of ACP histology.