Browse

You are looking at 1 - 10 of 10 items for

  • By Author: Shaffrey, Christopher x
Clear All
Restricted access

Virginie Lafage, Neil J. Bharucha, Frank Schwab, Robert A. Hart, Douglas Burton, Oheneba Boachie-Adjei, Justin S. Smith, Richard Hostin, Christopher Shaffrey, Munish Gupta, Behrooz A. Akbarnia and Shay Bess

Object

Sagittal spinopelvic imbalance is a major contributor to pain and disability for patients with adult spinal deformity (ASD). Preoperative planning is essential for pedicle subtraction osteotomy (PSO) candidates; however, current methods are often inaccurate because no formula to date predicts both postoperative sagittal balance and pelvic alignment. The authors of this study aimed to evaluate the accuracy of 2 novel formulas in predicting postoperative spinopelvic alignment after PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. Adults with spinal deformity (> 21 years old) who were treated with a single-level lumbar PSO for sagittal imbalance were evaluated. All patients underwent preoperative and a minimum of 6-month postoperative radiography. Two novel formulas were used to predict the postoperative spinopelvic alignment. The results predicted by the formulas were then compared with the actual postoperative radiographic values, and the formulas' ability to identify successful (sagittal vertical axis [SVA] ≤ 50 mm and pelvic tilt [PT] ≤ 25°) and unsuccessful (SVA > 50 mm or PT > 25°) outcomes was evaluated.

Results

Ninety-nine patients met inclusion criteria. The median absolute error between the predicted and actual PT was 4.1° (interquartile range 2.0°–6.4°). The median absolute error between the predicted and actual SVA was 27 mm (interquartile range 11–47 mm). Forty-one of 54 patients with a formula that predicted a successful outcome had a successful outcome as shown by radiography (positive predictive value = 0.76). Forty-four of 45 patients with a formula that predicted an unsuccessful outcome had an unsuccessful outcome as shown by radiography (negative predictive value = 0.98).

Conclusions

The spinopelvic alignment formulas were accurate when predicting unsuccessful outcomes but less reliable when predicting successful outcomes. The preoperative surgical plan should be altered if an unsuccessful result is predicted. However, even after obtaining a predicted successful outcome, surgeons should ensure that the predicted values are not too close to unsuccessful values and should identify other variables that may affect alignment. In the near future, it is anticipated that the use of these formulas will lead to better surgical planning and improved outcomes for patients with complex ASD.

Restricted access

Steven M. Presciutti, Peter DeLuca, Paul Marchetto, Jared T. Wilsey, Christopher Shaffrey and Alexander R. Vaccaro

Object

The chronic stinger syndrome is a distinct entity from acute stingers and has been shown to have its own pathophysiology that, unlike acute stingers, may reflect long-standing geometrical changes of the subaxial spinal canal and chronic irritation/degeneration of the exiting nerve root complex. There is no method available, however, to accurately predict these symptoms in athletes. The mean subaxial cervical space available for the cord (MSCSAC) is a novel alternative to the Torg ratio for predicting neurological symptoms caused by cervical spondylosis in elite athletes. It is the goal of this study to determine critical values for this measurement index and to retrospectively correlate those values to neurological symptoms.

Methods

Magnetic resonance images obtained in 103 male athletes participating in the 2005 and 2006 National Football League Scouting Combine and a control group of 42 age-matched male nonathletes were retrospectively reviewed. The Torg ratio and SAC values were calculated in triplicate at each cervical level from C3–6 by using lateral radiographs and midsagittal T2-weighted MR images of the cervical spine, respectively. These values were then averaged for each individual to produce mean subaxial cervical Torg ratio (MSCTR) and MSCSAC values. Receiver operating characteristic curves were constructed for each measurement technique and were compared based on their respective area under the curves (AUCs).

Results

The MSCSAC difference between athletes with and without chronic stingers was statistically significant (p < 0.01). The difference between athletes with and without chronic stingers compared with controls was also statistically significant (p < 0.001 and p < 0.001, respectively). The AUC for the MSCSAC was 0.813, which was significantly greater than the AUC for both the MSCTR (p = 0.0475) and the individual Torg ratio (p = 0.0277). The MSCTR had the second largest AUC (0.676) and the conventional method of measuring individual Torg ratio values produced the lowest AUC (0.661). It was found that using the MSCSAC with a critical value of 5.0 mm produced a sensitivity of 80% and a negative likelihood ratio of 0.23 for predicting chronic stingers. Lowering the cutoff value to 4.3 mm for the MSCSAC resulted in a possible confirmatory test with a specificity of 96% and a positive likelihood ratio of 13.25.

Conclusions

A critical value of 5.0 mm for the MSCSAC provides the clinician with a screening test for chronic stingers and anything < 4.3 mm adds additional confidence as a confirmatory test. These results are ~ 20% more accurate than the classic Torg ratio based on our AUC analysis. It was found that measuring the spinal geometry throughout the length of the subaxial cervical spine produced a more reliable method by which to predict neurological symptoms than the traditional approach of measuring individual levels. This shows that the underlying pathogenesis of the chronic stinger syndrome is best characterized as a process that involves the entire subaxial region uniformly.