Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Michael Gaab x
  • By Author: Schweim, Klaus H. x
Clear All Modify Search
Restricted access

Henry W. S. Schroeder, Christiane Schweim, Klaus H. Schweim and Michael R. Gaab

Object. The purpose of this prospective study was to evaluate aqueductal cerebrospinal fluid (CSF) flow after endoscopic aqueductoplasty. In all patients, preoperative magnetic resonance (MR) imaging revealed hydrocephalus caused by aqueductal stenosis and lack of aqueductal CSF flow.

Methods. In 14 healthy volunteers and in eight patients with aqueductal stenosis who had undergone endoscopic aqueductoplasty, aqueductal CSF flow was investigated using cine cardiac-gated phase-contrast MR imaging. For qualitative evaluation of CSF flow, the authors used an in-plane phase-contrast sequence in the midsagittal plane. The MR images were displayed in a closed-loop cine format. Quantitative through-plane measurements were performed in the axial plane perpendicular to the aqueduct. Evaluation revealed no significant difference in aqueductal CSF flow between healthy volunteers and patients with regard to temporal parameters, CSF peak and mean velocities, mean flow, and stroke volume. All restored aqueducts have remained patent 7 to 31 months after surgery.

Conclusions. Aqueductal CSF flow after endoscopic aqueductoplasty is similar to aqueductal CSF flow in healthy volunteers. The data indicate that endoscopic aqueductoplasty seems to restore physiological aqueductal CSF flow.

Full access

Henry W. S. Schroeder, Christiane Schweim, Klaus H. Schweim and Michael R. Gaab

Object

The purpose of this prospective study was to evaluate aqueductal cerebrospinal fluid (CSF) flow after endoscopic aqueductoplasty. In all patients, preoperative magnetic resonance (MR) imaging revealed hydrocephalus caused by aqueductal stenosis and lack of aqueductal CSF flow.

Methods

In 14 healthy volunteers and in eight patients with aqueductal stenosis who had undergone endoscopic aqueductoplasty, aqueductal CSF flow was investigated using cine cardiac-gated phase-contrast MR imaging. For qualitative evaluation of CSF flow, the authors used an in-plane phase-contrast sequence in the midsagittal plane. The MR images were displayed in a closed-loop cine format. Quantitative through-plane measurements were performed in the axial plane perpendicular to the aqueduct. Evaluation revealed no significant difference in aqueductal CSF flow between healthy volunteers and patients with regard to temporal parameters, CSF peak and mean velocities, mean flow, and stroke volume. All restored aqueducts have remained patent 7 to 31 months after surgery.

Conclusions

Aqueductal CSF flow after endoscopic aqueductoplasty is similar to aqueductal CSF flow in healthy volunteers. The data indicate that endoscopic aqueductoplasty seems to restore physiological aqueductal CSF flow.

Restricted access

Christiane Schroeder, Steffen Fleck, Michael R. Gaab, Klaus H. Schweim and Henry W. S. Schroeder

Object

The aim of this study was to evaluate and compare CSF flow after endoscopic third ventriculostomy (ETV) and endoscopic aqueductoplasty (EAP) in patients presenting with obstructive hydrocephalus caused by aqueductal stenosis.

Methods

In patients harboring aqueductal stenosis who underwent EAP (n = 8), ETV (n = 8), and both ETV and EAP (n = 6), CSF flow through the restored aqueduct and through the ventriculostomy was investigated using cine cardiac-gated phase-contrast MRI. For qualitative evaluation of CSF flow, an in-plane phase-contrast sequence in the midsagittal plane was used. The MR images were displayed in a closed-loop cine format. Quantitative through-plane measurements were performed in the axial plane perpendicular to the aqueduct and/or floor of the third ventricle.

Results

Evaluation revealed significantly higher CSF flow through the ventriculostomies compared with flow through the aqueducts. This was true both when comparing the ETV group with the EAP group and when comparing the flow of the ventriculostomy and aqueduct within the ETV and EAP group. There was no difference in aqueductal CSF flow between patients who underwent EAP alone and patients who underwent ETV and EAP. There was also no difference in ventriculostomy CSF flow between patients who underwent ETV alone and patients who underwent ETV and EAP. Fifty percent of the restored aqueducts became occluded at a mean of 46 months after surgery (range 18–126 months). In contrast, all ETVs remained patent in the mean follow-up period of 110 months after surgery, although 1 patient required shunt placement after 66 months.

Conclusions

Cerebrospinal fluid flow through ventriculostomies is significantly higher than aqueductal CSF flow after EAP. This could be one factor to explain why the reclosure rate of aqueducts after EAP is higher than the reclosure rate of the ventriculostoma after ETV.