Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Andreas W. Unterberg x
  • By Author: Schneider, Gerd-Helge x
Clear All Modify Search
Restricted access

Karl L. Kiening, Andreas W. Unterberg, Tillman F. Bardt, Gerd-Helge Schneider and Wolfgang R. Lanksch

✓ Monitoring of cerebral oxygenation is considered to be of great importance in minimizing secondary hypoxic and ischemic brain damage following severe head injury. Although the threshold for cerebral hypoxia in jugular bulb oximetry (measurement of O2 saturation in the jugular vein (SjvO2)) is generally accepted to be 50% oxygen saturation, a comparable value in brain tissue PO2 (PtiO2) monitoring, a new method for direct assessment of PO2 in the cerebral white matter, has not yet been established. Hence, the purpose of this study was to compare brain PtiO2 with SjvO2 in severely head injured patients during phases of reduced cerebral perfusion pressure (CPP) to define a threshold in brain PtiO2 monitoring. In addition, the safety and data quality of both SjvO2 and brain PtiO2 monitoring were studied.

In 15 patients with severe head injuries, SjvO2 and brain PtiO2 were monitored simultaneously. For brain PtiO2 monitoring a polarographic microcatheter was inserted in the frontal cerebral white matter, whereas for SjvO2 measurements were obtained by using a fiberoptic catheter placed in the jugular bulb. Intracranial pressure was monitored by means of an intraparenchymal catheter. Mean arterial blood pressure, CPP, end-tidal CO2, and arterial oxygen saturation (pulse oximetry) were continuously recorded. All data were simultaneously stored and analyzed using a multimodal computer system. For specific analysis, phases of marked deterioration in systemic blood pressure and consecutive reductions in CPP were investigated.

There were no complications that could be attributed to the PtiO2 catheters, that is, no intracranial bleeding or infection. The “time of good data quality” was 95% in brain PtiO2 compared to 43% in SjvO2; PtiO2 monitoring could be performed twice as long as SjvO2 monitoring. During marked decreases in CPP, SjvO2 and brain PtiO2 correlated closely. A significant second-order regression curve of SjvO2 versus brain PtiO2 (p < 0.01) was plotted. At a threshold of 50% in SjvO2, brain PtiO2 was found to be within the range of 3 to 12 mm Hg, with a regression curve “best fit” value of 8.5 mm Hg. There was a close correlation between CPP and oxygenation parameters (PtiO2 and SjvO2) when CPP fell below a breakpoint of 60 mm Hg, suggesting intact cerebral autoregulation in most patients.

This study demonstrates that monitoring brain PtiO2 is a safe, reliable, and sensitive diagnostic method to follow cerebral oxygenation. In comparison to SjvO2, PtiO2 is more suitable for long-term monitoring. It can be used to minimize episodes of secondary cerebral maloxygenation after severe head injury and may, hopefully, improve the outcome in severely head injured patients.